10.1002/chem.201701248
Chemistry - A European Journal
FULL PAPER
D3/def2-SVP theoretical level as implemented in Gaussian09.[40] SR-
ZORA-BP86-D3/TZP computations were performed using ADF2013 suite
of programs (core potentials were not used, and quality of the Becke
numerical integration grid was set to the keyword good),[41–43] while the
remaining computations were carried out in Gaussian09 code.[40]
Detailed information about AIM, ELF, and NBO can be found
elsewhere.[30–33]
Commun. 2007, 5046–5048; c) P. Mal, B. Breiner, K. Rissanen, J. R.
Nitschke, Science 2009, 324, 1697–1699; d) C. Schwarzmaier, M.
Sierka, M. Scheer, Angew. Chem. 2013, 125, 891–894; Angew. Chem.
Int. Ed. 2013, 52, 858–861; e) C. Schwarzmaier, A. Y. Timoshkin, M.
Scheer, Angew. Chem. 2013, 125, 7751–7755; Angew. Chem. Int. Ed.
2013, 52, 7600–7603; f) C. Schwarzmaier, A. Schindler, C. Heindl, S.
Scheuermayer, E. V. Peresypkina, A. V. Virovets, M. Neumeier, R.
Gschwind, M. Scheer, Angew. Chem. 2013, 125, 11097–11100; Angew.
Chem. Int. Ed. 2013, 52, 10896–10899; g) F. Spitzer, M. Sierka, M.
Latronico, P. Mastrorilli, A. V. Virovets, M. Scheer, Angew. Chem. 2015,
127, 4467–4472; Angew. Chem. Int. Ed. 2015, 54, 4392–4396; h) J. E.
Borger, M. S. Bakker, A. W. Ehlers, M. Lutz, J. C. Slootweg, K.
Lammertsma, Chem. Commun. 2016, 52, 3284–3287.
Single Crystal X-ray diffraction. The crystals were mounted on nylon
loops (1, 2) and a glass fiber (3) in inert oil. Data of 1 and 2 were
collected on a Bruker AXS D8 Kappa diffractometer with APEX2 detector
(mono-chromated MoK radiation, = 0.71073 Å) those of 3 on a Stoe
IPDS II (mono-chromated MoK radiation, = 0.71073 Å). The structures
were solved by Direct Methods (SHELXS-97)[44] and refined
anisotropically by full-matrix least-squares on F2 (SHELXL-2014).[45]
Absorption corrections were performed semi-empirically from equivalent
reflections on basis of multi-scans (SADABS, XPREP). Hydrogen atoms
were refined using a riding model or rigid methyl groups. The NMeEt
ligand in 1 is disordered over two positions. Not all atoms of the alkyl
residues could only be refined anisotropically. Where possible ISOR and
RIGU restraints were necessary.
[6]
[7]
T. M. Bernhardt, B. Stegemann, B. Kaiser, K. Rademann, Angew.
Chem. 2003, 115, 209–212; Angew. Chem. Int. Ed. 2003, 42, 199–202.
a) M. A. Beswick, N. Choi, C. N. Harmer, A. D. Hopkins, M. McPartlin,
D. S. Wright, Science 1998, 281, 1500–1501; b) A. Bashall, M. A.
Beswick, N. Choi, A. D. Hopkins, S. J. Kidd, Y. G. Lawson, M. E. G.
Mosquera, M. McPartlin, P. R. Raithby, A. A. E. H. Wheatley, J. A.
Wood, D. S. Wright, Dalton Trans. 2000, 479–486; c) H. J. Breunig, M.
E. Ghesner, E. Lork, Z. Anorg. Allg. Chem. 2005, 631, 851–856.
a) M. Lindsjö, A. Fischer, L. Kloo, Angew. Chem. 2004, 116, 2594–
2597; Angew. Chem. Int. Ed. 2004, 43, 2540–2543; b) M. H.
Holthausen, K. Feldmann, S. Schulz, A. Hepp, J. J. Weigand, Inorg.
Chem. 2012, 51, 3374–3387; c) M. Donath, E. Conrad, P. Jerabek, G.
Frenking, R. Fröhlich, N. Burford, J. J. Weigand, Angew. Chem. 2012,
124, 3018–3021; Angew. Chem. Int. Ed. 2012, 51, 2964–2967; d) S. S.
Chitnis, Y.-Y. Carpenter, N. Burford, R. McDonald, M. J. Ferguson,
Angew. Chem. 2013, 125, 4963–4966; Angew. Chem. Int. Ed. 2013, 52,
4863–4866; e) M. Donath, M. Bodensteiner, J. J. Weigand, Chem. Eur.
J. 2014, 20, 17306–17310; f) S. S. Chitnis, N. Burford, J. J. Weigand, R.
McDonald, Angew. Chem. 2015, 127, 7939–7943; Angew. Chem. Int.
Ed. 2015, 54, 7828–7832; g) S. S. Chitnis, A. P. M. Robertson, N.
Burford, J. J. Weigand, R. Fischer, Chem. Sci. 2015, 6, 2559–2574.
C. Ganesamoorthy, D. Bläser, C. Wölper, S. Schulz, Chem. Commun.
2014, 50, 12382.
[8]
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft
(SCHU 1069/22-1) is acknowledged. A.S.N. is also thankful to
the Siberian Supercomputer Center SB RAS for providing
computational resources. We thank E. Hammes for technical
support.
Keywords: Main group elements • Polystibide • Cluster
[9]
compounds • Subvalent compounds
[10] L. Tuscher, C. Ganesamoorthy, D. Bläser, C. Wölper, S. Schulz, Angew.
Chem. 2015, 127, 10803–10807; Angew. Chem. Int. Ed. 2015, 54,
10657–10661.
[1]
[2]
For review articles see: a) S. Scharfe, F. Kraus, S. Stegmaier, A.
Schier, T. F. Fässler, Angew. Chem. 2011, 123, 3712–3754; Angew.
Chem. Int. Ed. 2011, 50, 3630–3670; b) R. S. P. Turbervill, J. M.
Goicoechea, Chem. Rev. 2014, 114, 10807–10828.
[11] C. Ganesamoorthy, D. Bläser, C. Wölper, S. Schulz, Angew. Chem.
2014, 126, 11771–11775; Angew. Chem. Int. Ed. 2014, 53, 11587–
11591.
a) S. N. Konchenko, N. A. Pushkarevsky, M. T. Gamer, R. Köppe, H.
Schnöckel, P. W. Roesky, J. Am. Chem. Soc. 2009, 131, 5740–5741;
b) W. Huang, P. L. Diaconescu, Chem. Commun. 2012, 48, 2216–
2218; c) T. Li, S. Kaercher, P. W. Roesky, Chem. Soc. Rev. 2014, 43,
42–57; d) E. Mädl, G. Balázs, E. V. Peresypkina, M. Scheer, Angew.
Chem. 2016, 128, 7833–7838; Angew. Chem. Int. Ed. 2016, 55, 7702–
7707.
[12] C. Ganesamoorthy, C. Wölper, A. S. Nizovtsev, S. Schulz, Angew.
Chem. 2016, 128, 4276–4281; Angew. Chem. Int. Ed. 2016, 55, 4204–
4209.
[13] C. Ganesamoorthy, J. Krüger, C. Wölper, A. S. Nizovtsev, S. Schulz,
Chem. Eur. J. 2017, 23, 2461–2468.
[14] a) Y. Z. Wang, G. H. Robinson, Dalton Trans. 2012, 41, 337–345; b) A.
Sidiropoulos, B. Osborne, A. N. Simonov, D. Dange, A. M. Bond, A.
Stasch, C. Jones, Dalton Trans. 2014, 43, 14858–14864; c) R.
Kretschmer, D. A. Ruiz, C. E. Moore, A. L. Rheingold, G. Bertrand,
Angew. Chem. 2014, 126, 8315–8318; Angew. Chem. Int. Ed. 2014, 53,
8176–8179.
[3]
[4]
a) S. Heinl, M. Scheer, Chem. Sci. 2014, 5, 3221–3225; b) C.
Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem.
2014, 126, 9223–9227; Angew. Chem. Int. Ed. 2014, 53, 9077–9081
and references cited therein; c) F. Spitzer, C. Graßl, G. Balázs, E. M.
Zolnhofer, K. Meyer, M. Scheer, Angew. Chem. 2016, 128, 4412–4416;
Angew. Chem. Int. Ed. 2016, 55, 4340–4344.
[15] 1: [C64H98Ga2N6Sb2], M = 1334.42, brown block, (0.272 × 0.221 × 0.211
a) W. T. K. Chan, F. García, A. D. Hopkins, L. C. Martin, M. McPartlin,
D. S. Wright, Angew. Chem. 2007, 119, 3144–3146; Angew. Chem. Int.
Ed. 2007, 46, 3084–3086; b) J. E. Borger, A. W. Ehlers, M. Lutz, J. C.
Slootweg, K. Lammertsma, Angew. Chem. 2014, 126, 13050–13053;
Angew. Chem. Int. Ed. 2014, 53, 12836–12839; c) M. Arrowsmith, M. S.
Hill, A. L. Johnson, G. Kociok-Köhn, M. F. Mahon, Angew. Chem. 2015,
127, 7993–7996; Angew. Chem. Int. Ed. 2015, 54, 7882–7885; d) J. E.
Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew.
Chem. 2016, 128, 623–627; Angew. Chem. Int. Ed. 2016, 55, 613–617.
a) I. Krossing, J. Am. Chem. Soc. 2001, 123, 4603–4604; b) G.
Santiso-Quiñones, A. Reisinger, J. Slattery, I. Krossing, Chem.
mm); monoclinic, space group P21/n;
a = 11.1860(16) Å, b =
13.8639(19) Å, c = 20.692(3) Å; α = 90°, β = 90.138(7)°, γ = 90°, V =
3209.0(8) Å3; Z = 2; μ = 1.705 mm-1; ρcalc = 1.381 g⋅cm-3; 75535
reflections (θmax
parameters; largest max./min in the final difference Fourier synthesis
1.768 e⋅Å-3/ -1.013 e⋅Å-3; max./min. transmission 0.75/0.60; R1
= 33.259°), 11702 unique (Rint = 0.0324); 366
=
0.0447 (I > 2σ(I)), wR2 = 0.1485 (all data). 2∙C7H8: [C72H98Cl2Ga2N4Sb2],
M = 1473.38, yellow green block, (0.498 × 0.251 × 0.224 mm); triclinic,
space group P-1; a = 10. 7920(4) Å, b = 13.3463(6) Å, c = 14.8284(7)
Å; α = 64.799(2)°, β = 75.432(2)°, γ = 79.932(2)°, V = 1741.60(14) Å3; Z
[5]
= 1; μ = 1.652 mm-1; ρcalc = 1.405 g⋅cm-3; 99689 reflections (θmax
=
This article is protected by copyright. All rights reserved.