Job/Unit: I42326
/KAP1
Date: 21-07-14 11:50:32
Pages: 10
FULL PAPER
2009, 3890; d) K. Binnemans, Coord. Chem. Rev. 2009, 109,
4283; e) M. D. Ward, Coord. Chem. Rev. 2007, 251, 1663; f) S.
Sivakumar, M. L. P. Reddy, J. Mater. Chem. 2012, 22, 10852.
[Dy4(LH)4(μ2-OH)3(μ2-OMe)][NO3]4·2MeOH·4H2O (1): Quanti-
ties: Dy(NO3)3·5H2O (0.0649 g, 0.15 mmol), LH2(0.04 g,
0.15 mmol), Et3N (0.078 mL, 0.6 mmol), yield 0.055 g, 68.75%
[3]
a) D. Gatteschi, A. Caneschi, L. Pardi, R. Sessoli, Science
1994, 265, 1054; b) R. Sessoli, L. H. Tsai, R. A. Schake, S.
Wang, B. J. Vincent, K. Folting, D. Gatteschi, G. Christou,
N. D. Hendrickson, J. Am. Chem. Soc. 1993, 115, 1804; c) A.
Yamashita, A. Watanabe, S. Akine, T. Nabeshima, M. Nakano,
T. Yamamura, T. Kajiwara, Angew. Chem. Int. Ed. 2011, 50,
4016; Angew. Chem. 2011, 123, 4102; d) E. Colacio, J. Ruiz,
A. J. Mota, M. A. Palacios, E. Cremades, E. Ruiz, F. J. White,
E. K. Brechin, Inorg. Chem. 2012, 51, 5857; e) F. Tuna, C. A.
Smith, M. Bodensteiner, L. Ungur, L. F. Chibotaru, E. J. L.
McInnes, R. E. P. Winpenny, D. Collison, R. A. Layfield, An-
gew. Chem. Int. Ed. 2012, 51, 6976; Angew. Chem. 2012, 124,
7082; f) V. Mereacre, Angew. Chem. Int. Ed. 2012, 51, 9922;
Angew. Chem. 2012, 124, 10060; g) J. Goura, J. P. S. Walsh, F.
Tuna, V. Chandrasekhar, Inorg. Chem. 2014, 53, 3385; h) S.
Das, A. Dey, S. Biswas, E. Colacio, V. Chandrasekhar, Inorg.
Chem. 2014, 53, 3417; i) V. E. Campbell, H. Bolvin, E. Rivière,
R. Guillot, W. Wernsdorfer, T. Mallah, Inorg. Chem. 2014, 53,
2598.
(based on Dy), m.p. Ͼ250 °C. IR (KBr): ν = 3426 (b), 3071 (b),
˜
2734 (w), 1611 (s), 1591 (s), 1569 (s), 1540 (s), 1472 (w), 1425 (w),
1369 (s), 1348 (s), 1184 (w), 1162 (w), 1128 (w), 1103 (w), 1035
(w), 1010 (w), 983 (w), 840 (w), 821 (w), 782 (w), 751 (w) cm–1.
C59H67Dy4N20O30 (2186.33): calcd. C 32.41, H 3.09, N 12.81;
found C 32.08, H 3.01, N 12.76.
[Tb4(LH)4(μ2-OH)3(μ2-OMe)][NO3]4·2MeOH·4H2O (2): Quanti-
ties: Tb(NO3)3·5H2O (0.0643 g, 0.15 mmol), LH2(0.04 g,
0.15 mmol), Et3N (0.078 mL, 0.6 mmol), yield 0.05 g, 62.1% (based
on Tb), m.p. Ͼ250 °C. IR (KBr): ν = 3420 (b), 3071 (b), 2734 (w),
˜
1611 (s), 1591 (s), 1569 (s), 1541 (s), 1475 (w), 1433 (w), 1371 (s),
1350 (s), 1180 (w), 1161 (w), 1132 (w), 1103 (w), 1033 (w), 1007 (w),
981 (w), 849 (w), 821 (w), 775 (w), 757 (w) cm–1. C59H74N20O30Tb4
(2179.11): calcd. C 32.52, H 3.42, N 12.86; found C 32.01, H 3.39,
N 12.71.
[Gd4(LH)4(μ2-OH)3(μ2-OMe)][NO3]4·2MeOH·5H2O (3): Quanti-
ties: Gd(NO3)3·6H2O (0.067 g, 0.15 mmol), LH2(0.04 g,
0.15 mmol), Et3N (0.078 mL, 0.6 mmol), yield 0.052 g, 64.47%
[4]
[5]
a) A. Picot, A. D’Aléo, P. L. Baldeck, A. Grichine, A. Duper-
ray, C. Andraud, O. Maury, J. Am. Chem. Soc. 2008, 130, 1532;
b) M. Bottrill, L. Kwok, N. Long, Chem. Soc. Rev. 2006, 35,
557.
(based on Gd), m.p. Ͼ250 °C. IR (KBr): ν = 3424 (b), 3072 (b),
˜
2734 (w), 1611 (s), 1591 (s), 1572 (s), 1543 (s), 1472 (w), 1429 (w),
1371 (s), 1350 (s), 1185 (w), 1162 (w), 1132 (w), 1103 (w), 1035
(w), 1010 (w), 987 (w), 849 (w), 821 (w), 782 (w), 757 (w) cm–1.
C59H59Gd4N20O31 (2173.27): calcd. C 32.61, H 2.74, N 12.89;
found C 32.50, H 3.27, N 12.53.
a) J. J. Baldoví, S. C.-Serra, J. M. Clemente-Juan, E. Coronado,
A. G.-Ariño, A. Palii, Inorg. Chem. 2012, 51, 12565; b) P. H.
Lin, T. J. Burchell, R. Clerac, M. Murugesu, Angew. Chem. Int.
Ed. 2008, 47, 8848; Angew. Chem. 2008, 120, 8980; c) M. T.
Gamer, Y. Lan, P. W. Roesky, A. K. Powell, R. Clerac, Inorg.
Chem. 2008, 47, 6581; d) B. Hussain, D. Savard, T. J. Burchell,
W. Wernsdorfer, M. Murugesu, Chem. Commun. 2009, 1100; e)
X.-J. Zheng, L.-P. Jin, S. Gao, Inorg. Chem. 2004, 43, 1600; f)
T. Kajiwara, H. Wu, T. Ito, N. Iki, S. Miyano, Angew. Chem.
Int. Ed. 2004, 43, 1832; Angew. Chem. 2004, 116, 1868; g) G.-
F. Xu, P. Gamez, S. J. Teat, J. Tang, Dalton Trans. 2010, 39,
4353; h) L. G. Westin, M. Kritikos, A. Caneschi, Chem. Com-
mun. 2003, 1012; i) P. C. Andrews, T. Beck, C. M. Forsyth,
B. H. Fraser, P. C. Junk, M. Massi, P. W. Roesky, Dalton Trans.
2007, 5651; j) A. S. R. Chesman, D. R. Turner, B. Moubaraki,
K. S. Murray, G. B. Deacon, S. R. Batten, Chem. Eur. J. 2009,
15, 5203; k) R. Wang, D. Song, S. Wang, Chem. Commun.
2002, 368; l) R. Wang, Z. Zheng, T. Jin, R. J. Staples, Angew.
Chem. Int. Ed. 1999, 38, 1813; Angew. Chem. 1999, 111, 1929;
m) X. Gu, D. Xue, Inorg. Chem. 2007, 46, 3212; n) X.-J. Kong,
Y. Wu, L.-S. Long, L.-S. Zheng, Z. Zheng, J. Am. Chem. Soc.
2009, 131, 6918.
[Er4(LH)4(μ2-OH)3(μ2-OMe)][NO3]4·3MeOH·3H2O (4): Quanti-
ties: Er(NO3)3·5H2O (0.066 g, 0.15 mmol), LH2(0.04 g, 0.15 mmol),
Et3N (0.078 mL, 0.6 mmol), yield 0.058 g, 70.3% (based on Er),
m.p. Ͼ250 °C. IR (KBr): ν = 3424 (b), 3072 (b), 2734 (w), 1610 (s),
˜
1589 (s), 1572 (s), 1538 (s), 1465 (w), 1426 (w), 1371 (s), 1350 (s),
1185 (w), 1160 (w), 1132 (w), 1103 (w), 1038 (w), 1015 (w), 987
(w), 845 (w), 831 (w), 789 (w), 756 (w) cm–1. C60H67Er4N20O30
(2217.38): calcd. C 32.50, H 3.05, N 12.63; found C 32.39, H 3.18,
N 12.50.
Supporting Information (see footnote on the first page of this arti-
cle): Literature-reported topologies of tetranuclear lanthanide com-
plexes, molecular structures of 1, 3, and 4, and list of bond lengths
and angles.
Acknowledgments
[6]
S. Xue, L. Zhao, Y.-N. Guo, J. Tang, Dalton Trans. 2012, 41,
351.
The authors are thankful to the Department of Science and Tech-
nology (DST), New Delhi for financial support. S. B. and S. D.
thank the Council of Scientific and Industrial Research (CSIR),
India for Senior Research Fellowships. V. C. is thankful to the De-
partment of Science and Technology for a J. C. Bose National Fel-
lowship.
[7]
N. M. Randell, M. U. Anwar, M. W. Drover, L. N. Dawe, L. K.
Thompson, Inorg. Chem. 2013, 52, 6731.
M. U. Anwar, L. K. Thompson, L. N. Dawe, F. Habibb, M.
Murugesu, Chem. Commun. 2012, 48, 4576.
V. Chandrasekhar, S. Hossain, S. Das, S. Biswas, J.-P. Sutter,
Inorg. Chem. 2013, 52, 6346.
V. Chandrasekhar, S. Das, A. Dey, S. Hossain, J.-P. Sutter, In-
org. Chem. 2013, 52, 11956.
M. Speldrich, H. Schilder, H. Lueken, P. Kögerler, Isr. J. Chem.
H. Lueken, Magnetochemie, Teubner, Stuttgart, Germany,
1999.
B. Wang, S. Jiang, X. Wang, S. Gaom, Lanthanide Based Mag-
netic Molecular Materials, in: Rare Earth Coordination Chemis-
try: Fundamentals and Applications (Ed.: C. Huang), Wiley,
Chichester, UK, 2010, and references cited therein.
a) M. E. Lines, J. Chem. Phys. 1971, 55, 2977; b) H. Lueken,
P. Hannibal, K. Handrick, J. Schmitz, Z. Kristallogr. 1989, 186,
185.
[8]
[9]
[10]
[11]
[12]
[13]
[1] a) P. W. Roesky, G. C.-Melchor, A. Zulys, Chem. Commun.
2004, 738; b) X. Yu, S. Y. Seo, M. J. Tobin, J. Am. Chem. Soc.
2007, 129, 7244; c) T. N. Parac-Vogt, K. Deleersnyder, K.
Binnemans, Eur. J. Org. Chem. 2005, 1810; d) F. Pohlki, S.
Doye, Chem. Soc. Rev. 2003, 32, 104; e) P. W. Roesky, T. E.
Müller, Angew. Chem. Int. Ed. 2003, 42, 2708; Angew. Chem.
2003, 115, 2812.
[2] a) M. Romanelli, G. A. Kumar, T. J. Emge, R. E. Riman, J. G.
Brennan, Angew. Chem. Int. Ed. 2008, 47, 6049; Angew. Chem.
2008, 120, 6138; b) C. M. G. dos Santos, A. J. Harte, S. J.
Quinn, T. Gunnlaugsson, Coord. Chem. Rev. 2008, 252, 2512;
c) S. Faulkner, L. Natrajan, S. William, D. Sykes, Dalton Trans.
[14]
Eur. J. Inorg. Chem. 0000, 0–0
8
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim