phenolic in nature (capsaicin). Under these conditions, capsaicin was clearly differentiated from all other components. In our
opinion, this could provide a basis for determining the authenticity of raw material and preparations containing pepper.
+
Capsaicin (1). Syrupy light-yellow compound, C H NO . Mass spectrum (70 eV, 200°C, m/z, %): 305 (30) [M] .
18 27
3
–1
IR spectrum (cm ): 1626 (C=O). UV spectrum (EtOH, ꢁ , nm): 230, 280. PMR spectrum (CDCl , ꢂ, ppm, J/Hz): 0.88
max
3
(3H, d, J = 6.0, H-17), 0.96 (3H, d, J = 6.0, H-18), 1.12–1.70 (4H, m, H-11, 12), 1.90–2.10 (2H, m, H-13), 2.20 (2H, t, J = 7.5,
H-10), 2.30–2.40 (1H, m, H-16), 3.88 (3H, s, OCH ), 4.37 (2H, d, J = 5.5, H-7), 5.35 (2H, m, H-14, 15), 5.65 (2H, br.s, NH,
3
13
OH), 6.75 (1H, dd, J = 7.5, 2.0, H-6), 6.82 (1H, d, J = 2.0, H-2), 6.87 (1H, d, J = 7.5, H-5). C NMR spectrum (CDCl , ꢂ,
3
ppm): 22.71 (C17), 22.73 (C-18), 25.36 (C-11), 29.52 (C-12), 31.05 (C-16), 32.30 (C-13), 36.86 (C-10), 43.64 (C-7), 56.04
(OCH ), 110.80 (C-2), 114.46 (C-5), 120.92 (C-6), 126.57 (C-14), 130.52 (C-1), 138.20 (C-15), 145.24 (C-4), 146.80 (C-3),
3
172.90 (C-9). The spectral properties of 1 agreed with those of capsaicin [7, 8].
–1
Dioctylphthalate (2). Colorless syrupy compound, C H O . IR spectrum (cm ): 1725 (ester C=O). UV spectrum
24 30
4
(EtOH, ꢁ
, nm): 231, 281. PMR spectrum (CDCl , ꢂ, ppm, J/Hz): 0.90 (6H, d, J = 6.0, 2CH ), 1.2–1.75 (24H, m, 12CH ),
max-
3 3 2
4.15–4.30 (4H, m, 2CH –O-), 7.50–7.75 (4H, m, aromatic H-3, 4, 5, 6). The combined spectral data enabled 2 to be identified
2
as dioctylphthalate [9].
+
Cosmosiin (3). Light-yellow crystals, C H O . Aglycon [M] 270 (100%), mp 225–227°C (aqueous alcohol).
21 20 10
UV spectrum (EtOH, ꢁ , nm): 270, 334; +NaOAc: 269, 378; +NaOMe: 278, 397; +AlCl : 279, 330, 347, 384;
max
3
+AlCl + HCl: 279, 330, 347, 384. PMR spectrum [300 MHz, (CD ) CO, ꢂ, ppm, J/Hz]: 3.3–4.0 (glucose 6H), 5.18 (1H, d,
3
3 2
J = 7.2, glucopyranose H-1ꢃꢃ), 6.43 (1H, d, J = 2.5, H-6), 6.80 (1H, d, J = 2.5, H-8), 6.90 (1H, s, H-3), 7.04 (2H, d, J = 9, H-3ꢃ,
5ꢃ), 7.97 (2H, d, J = 9, H-2ꢃ, 6ꢃ), 12.50 (1H, s, 5-OH). Flavonoid 3 was degraded by acid hydrolysis (10% HCl, 100°C,
2 h) and ꢄ-glucosidase (Fluka, Hungary) into glucose and the aglycon, which was identified by TLC as apigenin
(5,7,4ꢃ-trihydroxyflavone). The presence in the NMR spectrum of a singlet for the flavonoid 5-OH group at 12.50 ppm in
combination with results from enzymatic hydrolysis and UV spectral data (lack of a bathochromic shift of the short-wavelength
absorption band in the presence of NaOAc) enabled the carbohydrate unit to be assigned to the 7-OH group [10]. The glucose
was bonded as a ꢄ-D-glucopyranosyl unit (characteristic doublet for the anomeric proton at 5.12 ppm with J = 7.2 Hz). Based
on the physical chemical and spectral properties, 3 was identified as cosmosiin (apigenin 7-O-ꢄ-D-glucopyranoside) [11].
Thus, the study of the component composition of tincture and fruit of pepper isolated and characterized the dominant
alkaloid of pepper and dioctylphthalate. The flavonoid cosmosiin was isolated for the first time from pepper fruit.
Dioctylphthalate was described for the first time from fruit of the genus Capsicum L.
REFERENCES
1.
2.
State Registry of Drugs [in Russian], Vol. 1, Ofitsialꢃnoe Izdanie, Moscow, 2008.
V. A. Kurkin, Principles of Phytotherapy: Aide for Students of Pharmaceutical Higher Educational Institutions
[in Russian], OOO Ofort, GOU VPO SamGMU Roszdrava, Samara, 2009.
V. A. Kurkin, Pharmacognosy [in Russian], 2 Ed., Revised and Supplemented, Textbook, OOO Ofort, GOU
VPO SamGMU, Samara, 2007.
nd
3.
4.
H. Wagner, Pharmazeutische Biologie. Drogen und Ihre Inhaltsstoffe, Gustav Fischer Verlag,
Stuttgart-New York, 1993.
5.
6.
7.
8.
9.
R. Q. Thompson, K. R. Phinney, L. C. Sander, and M. J. Welch, Anal. Bioanal. Chem., 381, 1432 (2005).
V. A. Kurkin and L. R. Suleimanova, Farmatsiya, 58, No. 6, 15 (2010).
B. T. Sagdullaev and S. F. Aripova, Khim. Prir. Soedin., 179 (2000).
H.-G. Boit, Ergebnisse der Alkaloid-Chemie bis 1960, Akademie-Verlag, Berlin, 1961.
V. M. V. S. Sastry and G. R. K. Rao, J. Appl. Phycol., 7, 185 (1995).
T. J. Mabry, K. R. Markham, and M. B. Thomas, The Systematic Identification of Flavonoids Springer-Verlag,
New York, 1970.
10.
11.
D. Yu. Korulꢃkin, Zh. A. Abilov, R. A. Muzychkina, and G. A. Tolstikov, Natural Flavonoids [in Russian], Akad. Izd.
Geo, Novosibirsk, 2007.
668