J . Org. Chem. 2000, 65, 6217-6222
6217
Gen er a tion of a Silyleth ylen e-Tita n iu m Alk oxid e Com p lex. A
Ver sa tile Rea gen t for Silyleth yla tion a n d Silyleth ylid en a tion of
Un sa tu r a ted Com p ou n d s
Ryo Mizojiri, Hirokazu Urabe, and Fumie Sato*
Department of Biomolecular Engineering, Tokyo Institute of Technology,
4
259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, J apan
Received J une 19, 2000
(
Trimethylsilyl)ethylene-titanium alkoxide complex (1) was generated from trimethyl(vinyl)silane,
Ti(O-i-Pr) , and i-PrMgCl as a preformed alkene-titanium complex and reacted with several
4
unsaturated compounds such as aldehyde, imine, other vinylsilane, and acetylene to give the
corresponding coupling products 4a -f, 6, 8, and 10a -d in a regioselective manner. Both of the
two carbon-titanium bonds of the complex 1 reacted successively with esters to afford silylcyclo-
propanols 11a -j, 13, and 15, some synthetic applications of which were illustrated in the preparation
of â-silyl ketones 16 and cyclopropenes 17. Asymmetric addition of 1 to a chiral acyloxazolidinone
1
9 gave optically active cyclopropanol (+)-11a of 50% ee.
In tr od u ction
reagent, are basically under equilibrium. It should be
noted that, in both methods, complex A has been always
generated as a transient species in the presence of the
acceptor (esters). However, the coupling reaction with
other substrates that are not compatible with the condi-
tions for the concomitant generation of A should require
the preformed complex prior to their reaction.
Alkene-titanium alkoxide complex A, originally re-
ported by Kulinkovich et al. in 1989,1 has attracted
much attention recently, because it has realized a unique
-3
preparation of cyclopropanols from carboxylic esters as
shown in eq 1.1
,4-6
While complex A was initially gener-
ated from a titanium alkoxide and 2 equiv of an ap-
propriate Grignard reagent according to eq 1,1
a,b,4a-c
later,
it was generated via the olefin exchange reaction as
shown in eq 2,1
c,4d,6
in which two alkene-titanium
complexes, A and another one derived from the Grignard
(1) (a) Kulinkovich, O. G.; Sviridov, S. V.; Vasilevskii, D. A.;
Pritytskaya, T. S. Zh. Org. Khim. 1989, 25, 2244-2245. (b) Kulink-
ovich, O. G.; Sviridov, S. V.; Vasilevski, D. A. Synthesis 1991, 234. (c)
Kulinkovich, O. G.; Savchenko, A. I.; Sviridov, S. V.; Vasilevskii, D.
A. Mendeleev Commun. 1993, 230-231.
(
2) Sato, F.; Urabe, H.; Okamoto, S. Pure Appl. Chem. 1999, 71,
511-1519. Sato, F.; Urabe, H.; Okamoto, S. Synlett 2000, 753-775.
3) For review on relevant Group 4 metalocene-olefin complexes,
see: Yasuda, H.; Nakamura, A. Angew. Chem., Int. Ed. Engl. 1987,
1
(
2
1
6, 723-742. Buchwald, S. L.; Nielsen, R. B. Chem. Rev. 1988, 88,
047-1058. Negishi, E. In Comprehensive Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp
1
1
163-1184. Broene, R. D.; Buchwald, S. L. Science 1993, 261, 1696-
701. Negishi, E.; Takahashi, T. Acc. Chem. Res. 1994, 27, 124-130.
This time, we found that silylethylene complex 1 can
be generated as a preformed species, satisfying the above
argument, to enable reactions with a variety of coupling
Maier, M. In Organic Synthesis Highlights II; Waldmann, H., Ed.;
VCH: Weinheim, 1995; pp 99-113. Ohff, A.; Pulst, S.; Lefeber, C.;
Peulecke, N.; Arndt, P.; Burlakov, V. V.; Rosenthal, U. Synlett 1996,
1
7
11-118. Negishi, E.; Takahashi, T. Bull. Chem. Soc. J pn. 1998, 71,
55-769. Rosenthal, U.; Pellny, P.-M.; Kirchbauer, F. G.; Burlakov,
7
partners other than esters (eq 3 in Scheme 1). In
addition, this complex underwent the aforementioned
Kulinkovich cyclopropanol formation as efficiently as
other nonsilylated alkene-titanium alkoxide complexes
V. V. Acc. Chem. Res. 2000, 33, 119-129.
(4) For earlier reports, see: (a) de Meijere, A.; Kozhushkov, S. I.;
Spaeth, T.; Zefirov, N. S. J . Org. Chem. 1993, 58, 502-505. (b) Corey,
E. J .; Rao, A.; Noe, M. C. J . Am. Chem. Soc. 1994, 116, 9345-9346. (c)
Lee, J .; Kim, H.; Cha, J . K. J . Am. Chem. Soc. 1995, 117, 9919-9920.
(d) Lee, J .; Kang, C. H.; Kim, H.; Cha, J . K. J . Am. Chem. Soc. 1996,
(6) For the contribution from our group, see: (a) Kasatkin, A.; Sato,
F. Tetrahedron Lett. 1995, 36, 6079-6082. (b) Kasatkin, A.; Kobayashi,
K.; Okamoto, S.; Sato, F. Tetrahedron Lett. 1996, 37, 1849-1852. (c)
Okamoto, S.; Iwakubo, M.; Kobayashi, K.; Sato, F. J . Am. Chem. Soc.
1997, 119, 6984-6990. (d) Hikichi, S.; Hareau, G. P-J .; Sato, F.
Tetrahedron Lett. 1997, 38, 8299-8302. (e) Mizojiri, R.; Urabe, H.; Sato,
F. Angew. Chem., Int. Ed. 1998, 37, 2666-2669; Angew. Chem. 1998,
110, 2811-2814. (f) Mizojiri, R.; Urabe, H.; Sato, F. Tetrahedron Lett.
1999, 40, 2557-2560.
1
18, 291-292.
(5) For latest reports, see: (a) Epstein, O. L., Kulinkovich, O. G.
Tetrahedron Lett. 1998, 39, 1823-1826. (b) Williams, C. M.; Chaplin-
ski, V.; Schreiner, P. R.; de Meijere, A. Tetrahedron Lett. 1998, 39,
7
6
5
Tetrahedron Lett. 1999, 40, 5935-5938. (f) Chevtchouk, T. A.; Isakov,
V. E.; Kulinkovich, O. G. Tetrahedron 1999, 55, 13205-13210. (g) Park,
S.-B.; Cha, J . K. Org. Lett. 2000, 2, 147-149. (h) Cho, S. Y.; Cha, J . K.
Org. Lett. 2000, 2, 1337-1339.
695-7698. (c) Lee, K. L.; Kim, S.-I.; Cha, J . K. J . Org. Chem. 1998,
3, 9135-9138. (d) Sung, M. J .; Lee, C.-W.; Cha, J . K. Synlett 1999,
61-562. (e) Epstein, O. L.; Savchenko, A. I.; Kulinkovich, O. G.
(7) Although the reactivity of various alkene complexes of Group 4
metals has been investigated, that of silylalkene complexes has not
been studied (see ref 3).
1
0.1021/jo000925x CCC: $19.00 © 2000 American Chemical Society
Published on Web 09/15/2000