complex 5, the measurement of its CV and DPV properties
reveals the presence of sequential coupled oxidation processes
exceptions, such as the coupling of a pair of Re Cl (µ-dppm)
2 4 2
units through the agency of the bridging 7,7,8,8,-tetracyano-
23
with E1/2 values of ca. ϩ0.40 V and ϩ0.33 V vs. Ag/AgCl, along
p-quinodimethane ligand (TCNQ), designed syntheses of
general utility are lacking. We have addressed this deficiency
1
with an irreversible oxidation at Ep,c = ϩ1.47 V. The ∆E value
1/2
1
of 70 mV accords with a very small comproportionation con-
in both our initial report and in the present study, and show
stant (K ∼ 15 from eqn. (1)), and therefore with the presence
of at most a very weak electronic coupling between the Re2
that the acetate ligand labilities of Re (µ-O CCH )Cl (µ-dppm)
(1) and cis-Re (µ-O CCH ) Cl (µ-dppm) (2) can be used to
2 2 3 2 2 2
c
2
2
3
4
2
units present in 5. The CV of 12 shows broad processes at E1/2
=
synthesize dicarboxylate-bridged dirhenium species that
include “dimers-of-dimers”, triangular assemblies and mixed-
metal trimetallic species.
ϩ0.35 V and E1/2 = ϩ1.40 V vs. Ag/AgCl. As might be expected,
although 12 is structurally related to 5, the saturated nature of
the organic spacer is not conducive to electronic communic-
ation between the dirhenium units.
Compound 2 is of special note because it is the thermo-
2,3
dynamically stable isomer of a cis/trans pair. With other
bridging phosphine ligands, it is the trans isomer that is the
thermodynamically stable form (e.g. trans-Re (µ-O CCH ) -
A final reaction between 2 and a dicarboxylic acid that we
investigated involved 1,1Ј-ferrocenedicarboxylic acid, a reagent
2
2
3 2
4
ϩ
24
that has been used previously to couple [Mo ] units into
“
Cl (µ-dppE) , where dppE = Ph PC(᎐CH )PPh ) and the trans
2
2
2
2
2
2
18
13b
dimers-of-dimers” or supramolecular squares. In these
isomer can be easily oxidized to its paramagnetic monocationic
congener. We are now investigating the acetate ligand lability in
cases, the two carboxylate groups on each [(O CC H ) Fe]
2
5
4 2
0
,ϩ
moiety are anti to one another and can therefore effect the
coupling of dimetal units. To our surprise, the reaction of 2
with this diacid afforded exclusively the trimetallic compound
cis-Re Cl (µ-dppm) [(µ-O CC H ) Fe] (14) in almost quantit-
compounds of the type [trans-Re (µ-O CCH ) Cl (µ-PP) ]
2 2 3 2 2 2
0,ϩ
with a view to incorporating the [trans-Re Cl (µ-PP) ] unit
2
2
2
into long chain polymers.
2
2
2
2
5
4 2
ative yield, the structure of which is shown in Fig. 3. This com-
Acknowledgements
R.A.W. thanks the John A. Leighty Endowment Fund for
support of this work.
References
1
2
3
4
5
6
J. ꢀ. Bera, P. Angaridis, F. A. Cotton, M. A. Petrukina,
P. E. Fanwick and R. A. Walton, J. Am. Chem. Soc., 2001, 123, 1515.
A. R. Cutler, D. R. Derringer, P. E. Fanwick and R. A. Walton,
J. Am. Chem. Soc., 1988, 110, 5024.
D. R. Derringer, E. A. Buck, S. M. V. Esjornson, P. E. Fanwick and
R. A. Walton, Polyhedron, 1990, 9, 743.
T. J. Barder, F. A. Cotton, ꢀ. R. Dunbar, G. L. Powell, W. Schwotzer
and R. A. Walton, Inorg. Chem., 1985, 24, 2550.
S.-M. ꢀuang, P. E. Fanwick and R. A. Walton, Inorg. Chem., 2001,
4
0, 5682.
E. A. Boudreaux and L. N. Mulay, eds., Theory and Applications of
Molecular Paramagnetism, John Wiley & Sons, New York, 1976.
P. C. McArdle, J. Appl. Crystallogr., 1996, 239, 306.
7
8
P. T. Beurskens, G. Admirall, G. Beurskens, W. P. Bosman,
S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla,
1
1
Fig. 3 ORTEP representation of the structure of the complex cis-
Re Cl (µ-dppm) [(µ-O CC H ) Fe] (14). The thermal ellipsoids are
The
DIRDIF92
Program
System,
Technical
Report,
Crystallography Laboratory, University of Nijmegen, The
Netherlands, 1992.
2
2
2
2
5
4 2
drawn at the 40% probability level except for the carbon atoms which
are circles of arbitrary radius. Selected bond distances (Å) and bond
angles (Њ) are as follows: Re(1)–Re(2) 2.3218(3), Re(1)–O(21) 2.102(4),
Re(1)–O(11) 2.158(3), Re(2)–O(22) 2.178(3), Re(2)–O(12) 2.115(3),
Re(1)–Cl(1) 2.5574(15), Re(2)–Cl(2) 2.5486(14), O(11)–C(10) 1.271(6),
O(12)–C(10) 1.264(6), O(21)–C(20) 1.273(6), O(22)–C(20) 1.261(6);
O(21)–Re(1)–O(11) 75.72(14), O(12)–Re(2)–O(22) 74.59(13), O(21)–
Re(1)–Re(2) 91.30(10), O(11)–Re(1)–Re(2) 86.15(10), O(12)–Re(2)–
Re(1) 91.40(10), O(22)–Re(2)–Re(1) 86.20(9), P(3)–Re(1)–P(1) 96.31(5),
P(4)–Re(2)–P(2) 94.20(5), Re(2)–Re(1)–Cl(1) 166.27(4), Re(1)–Re(2)–
Cl(2) 167.68(3), O(12)–C(10)–O(11) 124.1(5), O(22)–C(20)–O(21)
9 Z. Otwinowski and W. Minor, Methods Enzymol., 1996, 276, 307.
10 G. M. Sheldrick, SHELXL-97. A Program for Crystal Structure
Refinement, University of Gottingen, Germany, 1997.
11 C. ꢀ. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge
National Laboratory, Tennessee, USA, 1976.
12 R. H. Cayton, M. H. Chisholm, J. C. Huffman and E. B. Lobkovsky,
J. Am. Chem. Soc., 1991, 113, 8709.
13 (a) F. A. Cotton, C. Lin and C. A. Murillo, Inorg. Chem., 2001, 40,
472; (b) F. A. Cotton, C. Lin and C. A. Murillo, Inorg. Chem., 2001,
40, 478.
1
23.6(5).
14 T. Ren, G. Zou and J. C. Alvarez, Chem. Commun., 2000, 1197.
1
1
5 D. E. Richardson and H. Taube, Inorg. Chem., 1981, 20, 1278.
6 J. ꢀ. Bera, P. E. Fanwick and R. A. Walton, J. Chem. Soc., Dalton
Trans., 2001, 109.
pound, which is an example of the thermodynamically stable
cis-Re (µ-O CR) Cl (µ-dppm) type, shows dirhenium-based
2
2
2
2
2
1
7 D. R. Derringer, P. E. Fanwick, J. Moran and R. A. Walton, Inorg.
Chem., 1989, 28, 1384.
redox processes (both oxidations) in its CV (recorded in 0.1 M
TBAH–CH Cl ) at E = ϩ0.31 V and ϩ1.29 V vs. Ag/AgCl.
18 F. A. Cotton, J. P. Donahue, C. Lin and C. A. Murillo, Inorg. Chem.,
2001, 40, 1234.
1
2
2
1/2
These processes, which are reversible (with ip,a = ip,c and ∆E =
p
9 (a) J. D. Chen and F. A. Cotton, J. Am. Chem. Soc., 1991, 113, 5857;
b) F. A. Cotton and E. V. Dikarev, J. Cluster Sci., 1995, 6, 411.
6
0 mV), are accompanied by a reversible process at E1/2 = ϩ1.12
(
V (∆E = 60 mV) vs. Ag/AgCl that is associated with oxidation
p
2
0 F. A. Cotton, J. Lu and Y. Huang, Inorg. Chem., 1996, 35, 1839.
of the ferrocene dicarboxylate moiety.
2
1 ꢀ. J. Nelson, R. W. McGaff and D. R. Powell, Inorg. Chim. Acta,
2
000, 304, 130.
2
2 (a) S. S. Lau, P. E. Fanwick and R. A. Walton, J. Chem. Soc., Dalton
Trans., 1999, 2273; (b) J. ꢀ. Bera, S. S. Lau, P. E. Fanwick and
R. A. Walton, J. Chem. Soc., Dalton Trans., 2000, 4277.
Concluding remarks
More often than not, compounds in which pairs of multiply-
bonded dirhenium units have been incorporated into tetra-
rhenium clusters, or assemblies of higher nuclearity, have been
2
2
3 S. L. Bartley and ꢀ. R. Dunbar, Angew. Chem.,Int. Ed. Engl., 1991,
3
0, 448.
4 S.-M. ꢀuang, P. E. Fanwick and R. A. Walton, Inorg. Chim. Acta,
2000, 300–302, 434.
19–22
discovered more by chance than design.
While there are
2
172 J. Chem. Soc., Dalton Trans., 2002, 2168–2172