Porphyrins
2721±2738
6H; butyl-CH3), 0.65 (brs, 2H; butyl-CH2), 0.97 (brs, 4H; butyl-CH2), 1.04
3J(H,H) 7.5 Hz, 4H; butyl-CH2), 9.78 (s, 2H; 10-, 20-H); UV/Vis
(CH2Cl21% NEt3): lmax (lg e) 414 (5.42), 516 (4.43), 584 (4.10); MS
3
(brs, 6H; butyl-CH2), 1.65, 1.75, 1.78, 1.79 (each t, J(H,H) 7.5 Hz, 24H;
ethyl-CH3), 3.44 ± 3.52 (m, 16H; ethyl-CH2), 4.03 ± 4.18 (m, 6H;
CH2CH2CH2CH3), 8.77 (s, 1H; 20-H); 13C NMR (126 MHz, CDCl3) d
13.69, 17.71, 17.80, 17.88, 19.22, 21.96, 22.06, 23.28, 23.41, 31.55, 32.32, 36.88,
95.30, 115.47, 117.35, 135.60, 136.33, 136.66, 138.83, 144.13, 144.97, 146.37,
146.91; UV/Vis (CH2Cl2): lmax (lg e) 441 (5.08), 570 (3.91), 613sh nm
(80 eV, 2008C): m/z (%): 646 (100) [M] , 603 (25) [M À C3H7] , 323 (12)
[M]2; HR-MS (C44H62N4): calcd 646.4975, found 646.4930; C44H62N4 ´
0.33CH2Cl2 (675.31): calcd C78.85, H 9.35, N 8.30; found C79.08, H
9.31, N 7.65.
{5-Butyl-2,3,7,8,12,13,17,18-octaethyl-10-(1,4-dimethoxyphen-6-yl)porphyr-
inato}nickel(ii) (13): Using the procedure described for 3k compound 3a
(100 mg, 0.15 mmol) was treated with in situ generated 2,5-dimethoxy-
phenyl lithium and yielded purple crystals of 13 (60 mg, 0.08 mmol, 50%).
30% of the starting material could be recovered. M.p.: 2358C; 1H NMR
(3.20); MS (80 eV, 2208C): m/z (%): 758 (100) [M] , 715 (33) [M À C3H7] ,
701 (30) [M À C4H9] , 379 (10) [M]2; C44H68N4Ni (759.78): calcd C75.88, H
9.02, N 7.37; found C75.75, H 8.68, N 7.22.
Butylation of 8: Porphyrin 8 (100 mg, 0.13 mmol) was dissolved in THF
(30 mL) and cooled to À1008C. A BuLi solution (2m, 0.8 mL, 1.6 mmol)
was added dropwise and the mixture stirred for 10 min. Subsequently a
10% solution of water in THF (10 mL) was added at À1008Cand the
mixture stirred for 5 min. Then a solution of DDQ in CH2Cl2 (0.06m,
10 mL) was added to the cold solution and stirring continued for 20 min.
After warming up the mixture was filtered through alumina (grade I).
Column chromatography on alumina (grade III) with neat hexane yielded
first the tetrabutylated porphyrin 9 (50 mg, 0.06 mmol, 50%) followed by
the porphodimethene 10 (40 mg, 0.05 mmol, 40%). Both compounds were
recrystallized from CH2Cl2/CH3OH.
3
(500 MHz, CDCl3): d 0.58 (t, J(H,H) 7.5 Hz, 3H; butyl-CH3), 0.60 (t,
3J(H,H) 7.5 Hz, 3H; ethyl-CH3), 0.76, 1.02 (each m, 4H; butyl-CH2), 1.07
(t, 3J(H,H) 7.5 Hz, 3H; ethyl-CH3), 1.64, 1.69, 1.73, 1.74, 1.85 (each t,
3J(H,H) 7.5 Hz, 18H; ethyl-CH3), 2.67, 2.79 (each m, 4H; ethyl-CH2),
3.64 ± 3.79 (m, 18H; ethyl-CH2, OCH3), 4.20 (brs, 2H; butyl-CH2), 7.03 (m,
1H; 2-Hphenyl), 7.19 (dd, 3J(H,H) 9.2 Hz, 4J(H,H) 3.1 Hz, 1H; 3-Hphenyl),
7.56 (d, 4J(H,H) 3.5 Hz, 1H; 5-Hphenyl), 9.10, 9.19 (each s, 2H; 15-, 20-H);
13C NMR (126 MHz, CDCl3): d 13.61, 16.14, 16.64, 17.71, 17.90, 18.02,
18.19, 19.30, 19.42, 20.81, 21.10, 22.11, 23.32, 33.45, 36.67, 55.34, 55.92, 94.79,
95.55, 110.77, 113.72, 115.12, 137.96, 138.87, 139.46, 139.81, 140.23, 142.68,
143.10, 143.84, 144.58, 144.95, 145.36, 147.78, 152.67, 153.70; UV/Vis
(CH2Cl2): lmax (lg e) 419 (5.21), 543 (4.02), 585 nm (4.03); MS (80 eV,
(5,10,15,20-Tetrabutyl-2,3,7,8,12,13,17,18-octaethylporphyrinato)nickel(ii)
(9): M.p.: 2548C; 1H NMR (500 MHz, CDCl3): d 0.59 (t, 3J(H,H)
7.5 Hz, 12H; butyl-CH3), 0.73 (brs, 6H; butyl-CH2), 1.06 (m, 6H; butyl-
CH2), 1.74 (t, 3J(H,H) 7.5 Hz, 24H; ethyl-CH3), 3.48, 3.58 (each brs, 16H;
ethyl-CH2), 4.03 (m, 6H; butyl-CH2); 13CNMR (126 MHz, CDCl 3) d
13.69, 1771, 21.82, 23.34, 31.66, 36.72, 116.59 (4C, 5-, 10-, 15-, 20-C), 135.85,
146.48; UV/Vis (CH2Cl2): lmax (lg e) 459 (4.93), 591 (3.92), 634 nm (3.56);
3008C): m/z (%): 784 (100) [M] , 391 (24) [M]2; C48H60N4O2Ni (784.73):
calcd C73.56, H 7.72, N 7.15; found C73.53, H 7.67, N 7.02.
{5,10-Dibutyl-2,3,7,8,12,13,17,18-octaethyl-10-(1,4-dimethoxyphen-6-yl)-
porphyrinato}nickel(ii) (14): Using the procedure described for 3k por-
phyrin 6 (100 mg, 0.14 mmol) was treated with in situ generated 2,5-
dimethoxyphenyl lithium and yielded purple crystals of 14 (60 mg,
0.08 mmol, 50%). 20% of the starting material could be recovered.
M.p.: 2248C; 1H NMR (250 MHz, CDCl3): d 0.58 (t, 3J(H,H) 7.5 Hz,
3H; butyl-CH3), 0.60 (t, 3J(H,H) 7.5 Hz, 3H; butyl-CH3), 0.69 (m, 5H;
ethyl-CH3, butyl-CH2), 0.78 (m, 2H; butyl-CH2), 1.01 (t, 3J(H,H) 7.5 Hz,
3H; ethyl-CH3), 1.08 (m, 4H; butyl-CH2), 1.62, 1.67, 1.68, 1.80, 1.81, 1.84
(each t, 3J(H,H) 7.5 Hz, 21H; ethyl-CH3), 2.60 ± 2.73 (m, 4H; ethyl-CH2),
3.58 ± 3.67 (m, 18H; ethyl-CH2, OCH3), 4.18 (m, 4H; butyl-CH2), 7.02 (m,
1H; 2-Hphenyl), 7.16 (dd, 3J(H,H) 8.8 Hz, 4J(H,H) 2.2 Hz, 1H; 3-Hphenyl),
7.56 (m, 1H; 5-Hphenyl), 8.90 (s, 1H; 20-H); UV/Vis (CH2Cl2): lmax (lg e)
436 (5.02), 564 (4.09), 585 nm (3.75); MS (80 eV, 3008C): m/z (%): 838 (100)
MS (80 eV, 2508C): m/z (%): 814 (100) [M] , 771 (18) [M À C3H7] , 751
(73) [M À C4H9] , 407 (19) [M]2; C52H76N4Ni (815.89): calcd C76.55, H
9.36, N 6.87; found C76.64, H 9.17, N 7.10.
(5,10,15,20-Tetrabutyl-syn-5,15-dihydro-2,3,7,8,12,13,17,18-octaethylpor-
phyrinato)nickel(ii) (10): M.p.: 1808C; 1H NMR (500 MHz, CDCl3): d
0.95 (t, 3J(H,H) 7.5 Hz, 6H; 54-, 154-H), 0.98 (t, 3J(H,H) 7.5 Hz, 6H;
104-, 204-H), 1.03 (t, 3J(H,H) 7.5 Hz, 12H; 32-, 72-, 122-, 172-H), 1.13 (t,
3J(H,H) 7.5 Hz, 12H; 22-, 82-, 122-, 182-H), 1.41 ± 1.55 (m, 12H; 52-, 53-, 103-
, 152-, 153-, 203-H), 1.82 (m, 2H; 102-, 202-H), 2.30 (q, 3J(H,H) 7.5 Hz, 8H;
31-, 71-, 131-, 171-H), 2.58 (m, 8H; 21-, 81- 121-, 181-H), 3.12, (m, 2H; 51-, 151-
3
H), 3.78 (t, J(H,H) 7.5 Hz, 2H; 5-, 15-H); 13C NMR (126 MHz, CDCl3)
[M] , 419 (14) [M]2; C52H68N4O2Ni (839.83): calcd C73.18, H 8.05, N 6.54;
d 14.04, 16.29, 16.52, 17.43, 21.17, 23.08, 23.71, 28.92, 31.33, 36.68, 37.55,
42.74, 129.85, 132.44, 140.90, 148.29, 155.65; UV/Vis (CH2Cl2): lmax (lg e)
326 (0.04), 451 (4.70), 551 nm (3.83); MS (80 eV, 2008C): m/z (%): 816 (40)
found C73.26, H 8.35, N 6.69.
Butylation of ZnII(TPP): ZnII(TPP) 1c (150 mg, 0.23 mmol) was dissolved
in THF (20 mL) and cooled to À408C. Butyl lithium (2m, 0.4 mL) solution
was added rapidly and the mixture warmed to rt. An additional butyl
lithium stock solution (0.3 mL) was added until the reaction of ZnII(TPP)
was complete. The reaction mixture was treated with water and in order to
complete the demetallation HCl (15% in water) was added. The organic
phase was extracted with water and dried via filtration over alumina. This
step removes polar side products from the starting material which are
retained on the alumina. Final purification was achieved by chromatog-
raphy on alumina (grade III) using hexane/10% methanol in CH2Cl2 as
eluant. The first fraction consisted 16 (30 mg, 27 mmol, 18%) and the
second fraction of 15 (10 mg, 15 mmol, 6.5%). Use of free base H2TPP gives
the same products in lower yields 15: M.p.: 2188C; 1H NMR (500 MHz,
[M] , 759 (100) [M À C4H9] , 702 [M À 2C4H9] , 408 (12) [M]2
C52H78N4Ni (817.92): calcd C76.36, H 9.61, N 6.85; found C76.24, H 9.46,
N 6.88.
;
(5,10,15-Tributyl-syn-5,15-dihydro-2,3,7,8,12,13,17,18-octaethylporphyrina-
to)nickel(ii) (11): When the reaction of 6 with BuLi was performed at
temperatures above À1008Cformation of a brown side product was
observed, which was difficult to separate chromatographically from 8. At
temperatures above À308Cthe brown compound 11 was the sole product
formed and isolated in quantitative yield. M.p.: 1758C; 1H NMR
(250 MHz, CDCl3): d 0.93 (t, 3J(H,H) 7.5 Hz, 6H; 54-, 154-H), 0.96 (t,
3
3J(H,H) 7.5 Hz, 3 H ; 104-H), 1.013, 1.022 (each t, J(H,H) 7.5 Hz, 12H;
22-, 82-, 122-, 182-H), 1.11 (t, 3J(H,H) 7.5 Hz, 12H; 32-, 72-, 132-, 172-H),
1.43 ± 1.50 (m, 10H; 52-, 53-, 103-,152-, 153-H), 1.76 (m, 2H; 102-H), 2.29 (q,
J 7.5 Hz, 8H; 31-, 71-, 131-, 171-H), 2.38 ± 2.50, 2.52 ± 2.62 (each m, 8H; 21-,
81-, 121-, 181-H), 2.96 (m, 6H; 51-, 101-, 151-H), 3.78 (t, 3J(H,H) 7.5 Hz, 2H;
5-, 15-H), 6.57 (s, 1H; 20-H); UV/Vis (CH2Cl2): lmax (lg e) 445 (4.75),
3
CDCl3): d À1.41 (s, 2H; NH), 0.56 (t, J(H,H) 7.5 Hz, 3H; CH3), 0.75,
0.83 (each m, 2H; CH2), 0.98 (m, 2H CH2), 1.37, 1.59 (each m, 2H; CH2),
3.90 (dd, 3J(H,H) 1 Hz, 2J 17.5 Hz, 1H; 3-Hsyn), 4.37 (dd, 3J(H,H)
9 Hz, 2J 17.5 Hz, 1H; 3-Hanti), 4.68 (m, 1H; 2-H), 7.60 ± 8.20 (m, 20H;
Hphenyl), 8.18, 8.20 (each d, J 5 Hz, Hpyrrole), 8.42 (s, 2H; 12-, 13-H), 8.56,
8.57 (each d, J 5 Hz, 7-, 8-, 17-, 18-H); UV/Vis (CH2Cl21% NEt3): lmax
(lg e) 406sh (5.17), 420 (5.27), 518 (4.21), 547 (4.07), 598 (3.87), 652 nm
549 nm (4.31); MS (80 eV, 2208C): m/z (%): 760 (48) [M] , 703 (100) [M À
C4H9] , 646 (29) [M À 2C4H9] , 380 (9) [M]2; C48H70N4Ni (761.80): calcd C
75.68, H 9.26, N 7.35; found C75.66, H 8.87, N 7.30.
(4.53); MS (80 eV, 2508C): m/z (%): 672 (100) [M] , 615 (42) [M À C4H9] ,
336 (16) [M]2
; HR-MS [C48H40N4] calcd 672.3253, found 672.3258;
5,15-Dibutyl-2,3,7,8,12,13,17,18-octaethylporphyrin (12): According to the
procedure given for the preparation of 3c, 12 was prepared in 80% yield via
demetallation of 7. M.p.: 2048C; 1H NMR (250 MHz, CDCl3): d À1.53
(brs, 2H; NH), 0.95 (brs, 6H; butyl-CH3), 1.30 ± 2.13 (m, 32H; butyl-CH2,
ethyl-CH3), 3.93 ± 4.08 (m, 16H; ethyl-CH2), 4.93 (t, 3J(H,H) 7.5 Hz, 4H;
C48H40N4 ´ 0.25CH3OH (680.9): calcd C85.11, H 6.07, N 8.23; found C
85.27, H 5.84, N 8.27.
1
trans-2,3-Dibutyl-5,10,15,20-tetraphenylchlorin (16): M.p.: 2468C; H NMR
3
(500 MHz, CDCl3): d À1.42 (s, 2H; NH), 0.64 (t, J(H,H) 7.5 Hz, 6H;
1
butyl-CH2), 9.98 (brs, 2H; 10-, 20-H); H NMR (250 MHz, CDCl30.5%
CH3), 0.80 ± 1.21 (m, 8H; CH2), 1.53, 1.64 (m, 4H; CH2), 4.34 (dd,
3J(H,H) 10 Hz, 2J 3 Hz, 2H; 2-, 3-H), 7.60 ± 8.25 (m, 20H; Hphenyl), 8.16,
8.5 (each d, 3J(H,H) 5 Hz, 4H; 7-, 8-, 17-, 18-H), 8.41 (s, 2H; 12-, 13-H);
13C NMR (126 MHz, CDCl3) d 13.83, 22.07, 28.81, 33.80, 51.81, 112.83,
3
TFA, TMS): d À1.72 (s, 2H; NH), 1.22 (t, J(H,H) 7.5 Hz, 6H; butyl-
CH3), 1.25, 1.38 (each t, 3J(H,H) 7.5 Hz, 24H; ethyl-CH3), 1.93, 2.46 (each
m, 8H; butyl-CH2), 3.48, 3.64 (each q, J 7.5 Hz, 16H; ethyl-CH2), 4.63 (t,
Chem. Eur. J. 2000, 6, No. 15
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
0947-6539/00/0615-2733 $ 17.50+.50/0
2733