Mendeleev Commun., 2018, 28, 582–583
not only to increase its environmental friendliness, but also to
significantly reduce the heating time. In this SNHAr reaction of
pyridines with secondary phosphine chalcogenides in the presence
of 1,3-diphenylprop-2-yn-1-one as a trigger and oxidant, the
corresponding chalcone is also formed. This enone is a valuable
building block for organic synthesis23 and biologically active
substances.24
N(1)
S(2)
P(1)
P(2)
S(1)
This study was performed using the facilities of the Baikal
Joint Analytical Center, Siberian Branch, Russian Academy of
Sciences.
N(2)
Figure 1 Compound 4c in thermal vibration ellipsoids at 50% probability.
References
The structures of the synthesized compounds 4a–c have been
proved by multinuclear (1H, 13C, 15N and 31P) NMR spectro-
scopy, elemental analysis, and X-ray diffraction analysis {for
4-[bis(2-phenylethyl)phosphorothioyl]pyridine 4c, Figure 1}.‡
Compound 4c crystallizes in colourless prisms of the mono-
clinic system, P21/c centrosymmetric space group. The independent
part of the elementary crystal cell contains two molecules, differing
in spatial arrangement of the phenyl and pyridine rings. According
to X-ray analysis data (see Figure 1), P atom has a pyramidal
coordination, the length of the P–S bond is 1.9591(5) Å, and
those of the P–C bonds are 1.816(1)–1.824(1) Å. The valence angles
S–P–C [112.22(5)–114.10(5)°] and C–P–C [103.96(7)–106.28(7)°]
differ from the ideal tetrahedral angle (109.5°). The lengths of the
C–C alkyl bonds are 1.532(2)–1.539(2) Å, those of the C–C bonds
in the phenyl rings are 1.376(3)–1.395(2) Å. In the pyridine ring,
the lengths of the C–C bonds are 1.385(2)–1.395(2) Å and those
of the C–N bonds are 1.336(2)–1.341(2) Å.
1 M.Adib, S. Bagherzadeh, M. Mahdavi and H. R. Bijanzadeh, Mendeleev
Commun., 2010, 20, 50.
2 I. Yavari, T. Sanaeishoar and L. Azad, Mendeleev Commun., 2011,
21, 229.
3 M. B. Gawande, V. D. B. Bonifácio, P. S. Branco, R. Luque and R. S.
Varma, ChemSusChem, 2014, 7, 24.
4 M. N. Elinson, F. V. Ryzhkov, T. A. Zaimovskaya and M. P. Egorov,
Mendeleev Commun., 2015, 25, 185.
5 A. Sarkar, S. Santra, S. K. Kundu, A. Hajra, G. V. Zyryanov, O. N.
Chupakhin, V. N. Charushin and A. Majee, Green Chem., 2016, 18,
4475.
6 N. O.Yarosh, L. V. Zhilitskaya, L. G. Shagun, I. A. Dorofeev, L. I. Larina
and L. V. Klyba, Mendeleev Commun., 2016, 26, 426.
7 G. A. Chesnokov, P. S. Gribanov, M. A. Topchiy, L. I. Minaeva, A. F.
Asachenko, M. S. Nechaev, E. V. Bermesheva and M. V. Bermeshev,
Mendeleev Commun., 2017, 27, 618.
8 N. K. Gusarova, N. A. Chernysheva and B. A. Trofimov, Synthesis, 2017,
49, 4783.
9 F. Alonso, Y. Moglie, G. Radivoy and M. Yus, Green Chem., 2012, 14,
2699.
A plausible mechanism of the transformation is, apparently,
10 F. Alonso and Y. Moglie, Curr. Green Chem., 2014, 1, 87.
11 S. F. Malysheva, A. V. Artem’ev, N. K. Gusarova, N. A. Belogorlova,
A. I. Albanov, C. W. Liu and B. A. Trofimov, Beilstein J. Org. Chem.,
2015, 11, 1985.
12 N. I. Ivanova, P. A. Volkov, K. O. Khrapova, L. I. Larina, V. I. Smirnov,
T. N. Borodina and B. A. Trofimov, Synthesis, 2015, 47, 1611.
13 Y. Moglie, M. J. González-Soria, I. Martín-García, G. Radivoy and
F. Alonso, Green Chem., 2016, 18, 4896.
the same as we reported for the solvent protocol.15
In conclusion, an environmentally acceptable method for
the synthesis of 4-chalcogenophosphorylpyridines, promising
ligands19,20 and drug precursors,21,22 has been developed. The
depriving of an organic solvent from the procedure allows one
4-[Bis(2-phenylethyl)phosphoryl]pyridine 4a. Yield 258 mg (77%),
yellow powder, mp 80–81°C (lit.,15 mp 81–82°C). 31P NMR, d: 37.5.
Found (%): C, 75.39; H, 6.58; N, 4.09; P, 9.08. Calc. for C21H22NOP (%):
C, 75.21; H, 6.61; N, 4.18; P, 9.24.
4-[Bis(2-phenylethyl)phosphoryl]-3-methylpyridine 4b. Yield 217 mg
(62%), waxy product. 31P NMR, d: 39.6. Found (%): C, 75.58; H, 6.79;
N, 4.11; P, 8.73. Calc. for C22H24NOP (%): C, 75.62; H, 6.92; N, 4.01;
P, 8.86.
14 S. F. Malysheva, N. K. Gusarova, A. V. Artem’ev, N. A. Belogorlova,
A. I. Albanov, T. N. Borodina, V. I. Smirnov and B. A. Trofimov, Eur. J.
Org. Chem., 2014, 2516.
15 B. A. Trofimov, P. A. Volkov, K. O. Khrapova, A. A. Telezhkin, N. I.
Ivanova, A. I. Albanov, N. K. Gusarova and O. N. Chupakhin, Chem.
Commun., 2018, 54, 3371.
16 B. A. Trofimov and N. K. Gusarova, Mendeleev Commun., 2009, 19, 295.
17 P. A. Volkov, N. K. Gusarova, K. O. Khrapova, A. A. Telezhkin, N. I.
Ivanova, A. I. Albanov and B. A. Trofimov, J. Organomet. Chem., 2018,
867, 79.
18 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
19 N. H. Gama, A. Y. F. Elkhadir, B. G. Gordhan, B. D. Kana, J. Darkwa
and D. Meyer, Biometals, 2016, 29, 637.
20 M. Fereidoonnezhad, M. Niazi, Z. Ahmadipour, T. Mirzaee, Z. Faghih,
Z. Faghih and H. R. Shahsavari, Eur. J. Inorg. Chem., 2017, 2247.
21 S. Derossi, R. Becker, P. Li, F. Hartl and J. N. H. Reek, Dalton Trans.,
2014, 43, 8363.
22 M. Yamamoto, T. Nakanishi, Y. Kitagawa, K. Fushimi and Y. Hasegawa,
Mater. Lett., 2016, 167, 183.
23 G. Xiao, C. Ma, X. Wu, D. Xing and W. Hu, J. Org. Chem., 2018, 83,
4786.
24 P. A. Chaco´n Morales, C. Santiago Dugarte and J. M. Amaro Luis,
Biochem. Syst. Ecol., 2018, 77, 57.
4-[Bis(2-phenylethyl)phosphorothioyl]pyridine 4c.Yield 264 mg (75%),
crystalline compound (from hexane), mp 84–85°C (lit.,15 mp 83–84°C).
31P NMR, d: 45.7. Found (%): C, 71.63; H, 6.37; N, 3.92; P, 8.67; S, 8.89.
Calc. for C21H22NPS (%): C, 71.77; H, 6.31; N, 3.99; P, 8.81; S, 9.12.
‡
Crystal data for 4c. Data were collected on a Bruker D8Venture PHOTON
100 CMOS diffractometer with MoKa radiation (l = 0.71073 Å) using
the j- and w-scan techniques. The structures were solved and refined by
direct methods using SHELX.18 Data were corrected for absorption effects
using the multi-scan method (SADABS). All non-hydrogen atoms were
refined anisotropically using SHELX.18 The coordinates of the hydrogen
atoms were calculated from geometrical positions. The crystal of C21H22NPS
is monoclinic, space group P21/c, a = 38.2260(18), b = 9.0661(4) and
c = 10.8855(5) Å, b = 97.3460(10)°, V = 3741.5(3) Å3, Z = 8, reflections
collected 91206, of which 9010 unique reflections (Rint = 0.0400) were
used in all calculations. The final parameters are R1 = 0.0383, wR2 = 0.0951
[I > 2s(I)] and R1 = 0.0456, wR2 = 0.0992 (all data). GOOF = 1.076.
Completeness 99.8%.
CCDC 1837673 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge
Received: 15th May 2018; Com. 18/5578
– 583 –