Journal of the American Chemical Society
Page 6 of 7
domain subtype swaps to switch stereochemistry). With our
incomplete understanding of PKS processing, design
principles may accelerate the combinatorial approach
currently used for de novo biosynthesis and help provide a
framework to more rapidly produce valuable biochemicals.
approach to reductive loop swaps in modular polyketide synthases.
Chembiochem 2008, 9, 2740–2749.
7) Hagen, A.; Poust, S.; Rond, T. de; Fortman, J. L.; Katz, L.;
Petzold, C. J.; Keasling, J. D. Engineering a polyketide synthase for
in vitro production of adipic acid. ACS Synth. Biol. 2016, 5, 21–27.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
(8)
Gaisser, S.; Kellenberger, L.; Kaja, A. L.; Weston, A. J.;
Lill, R. E.; Wirtz, G.; Kendrew, S. G.; Low, L.; Sheridan, R. M.;
Wilkinson, B.; Galloway, I. S.; Stutzman-Engwall, K.; McArthur, H.
A.; Staunton, J.; Leadlay, P. F. Direct production of ivermectin-like
drugs after domain exchange in the avermectin polyketide synthase
of Streptomyces avermitilis ATCC31272. Org. Biomol. Chem. 2003,
1, 2840–2847.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
(9)
Maldonado, A. G.; Doucet, J. P.; Petitjean, M.; Fan, B.-T.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Molecular similarity and diversity in chemoinformatics: from theory
to applications. Mol Divers 2006, 10, 39–79.
Supplementary tables and figures, plasmids, strains, and detailed
experimental procedures
(10) Faille, A.; Gavalda, S.; Slama, N.; Lherbet, C.;
Maveyraud, L.; Guillet, V.; Laval, F.; Quémard, A.; Mourey, L.;
Pedelacq, J.-D. Insights into Substrate Modification by Dehydratases
from Type I Polyketide Synthases. J. Mol. Biol. 2017, 429, 1554–
AUTHOR INFORMATION
Corresponding Author
1
569.
11) Herbst, D. A.; Jakob, R. P.; Zähringer, F.; Maier, T.
(
*Corresponding author
Jay D. Keasling
Mycocerosic acid synthase exemplifies the architecture of reducing
polyketide synthases. Nature 2016, 531, 533–537.
(12) Barajas, J. F.; McAndrew, R. P.; Thompson, M. G.;
Backman, T. W. H.; Pang, B.; de Rond, T.; Pereira, J. H.; Benites, V.
T.; Martín, H. G.; Baidoo, E. E. K.; Hillson, N. J.; Adams, P. D.;
Keasling, J. D. Structural insights into dehydratase substrate selection
for the borrelidin and fluvirucin polyketide synthases. J. Ind.
Microbiol. Biotechnol. 2019, 46, 1225–1235.
ACKNOWLEDGMENT
This work was funded by the DOE Joint BioEnergy Institute
(http://www.jbei.org) supported by the U.S. Department of
Energy, Office of Science, Office of Biological and
Environmental Research between Lawrence Berkeley National
Laboratory and the U.S. Department of Energy, the Agile
Biofoundry sponsored by the U.S. DOE Office of Energy
Efficiency and Renewable Energy, Bioenergy Technologies and
Vehicle Technologies Offices, under Contract DEAC02-
(13) McDaniel, R.; Thamchaipenet, A.; Gustafsson, C.; Fu, H.;
Betlach, M.; Ashley, G. Multiple genetic modifications of the
erythromycin polyketide synthase to produce a library of novel
“
unnatural” natural products. Proc. Natl. Acad. Sci. USA 1999, 96,
1846–1851.
(14) Chen, X.; Reynolds, C. H. Performance of similarity
0
5CH11231 between DOE and Lawrence Berkeley National
measures in 2D fragment-based similarity searching: comparison of
structural descriptors and similarity coefficients. J Chem Inf Comput
Sci 2002, 42, 1407–1414.
(15) Peng, H.; Ishida, K.; Sugimoto, Y.; Jenke-Kodama, H.;
Hertweck, C. Emulating evolutionary processes to morph aureothin-
type modular polyketide synthases and associated oxygenases. Nat.
Commun. 2019, 10, 3918.
Laboratory, and the National Institute of Health Awards
F32GM125179, F32GM125166. H.G.M. was also supported by
the Basque Government through the BERC 2018-2021 program
and by Spanish Ministry of Economy and Competitiveness
MINECO: BCAM Severo Ochoa excellence accreditation SEV-
2
017- 0718.
(16) Awakawa, T.; Fujioka, T.; Zhang, L.; Hoshino, S.; Hu, Z.;
Hashimoto, J.; Kozone, I.; Ikeda, H.; Shin-Ya, K.; Liu, W.; Abe, I.
Reprogramming of the antimycin NRPS-PKS assembly lines inspired
by gene evolution. Nat. Commun. 2018, 9, 3534.
ABBREVIATIONS
PKS polyketide synthase; KS ketosynthase; AT acyltransferase;
ACP acyl carrier protein; KR ketoreductase; DH dehydratase; ER
enoylreductase; RL reductive loop; AP atom pair; MCS maxium
common substructure; BGC biosynthetic gene cluster
(17) Eng, C. H.; Backman, T. W. H.; Bailey, C. B.; Magnan,
C.; García Martín, H.; Katz, L.; Baldi, P.; Keasling, J. D.
ClusterCAD: a computational platform for type I modular polyketide
synthase design. Nucleic Acids Res. 2018, 46, D509–D515.
(18) Zhang, L.; Hashimoto, T.; Qin, B.; Hashimoto, J.; Kozone,
I.; Kawahara, T.; Okada, M.; Awakawa, T.; Ito, T.; Asakawa, Y.;
Ueki, M.; Takahashi, S.; Osada, H.; Wakimoto, T.; Ikeda, H.; Shin-
Ya, K.; Abe, I. Characterization of Giant Modular PKSs Provides
Insight into Genetic Mechanism for Structural Diversification of
Aminopolyol Polyketides. Angew. Chem. Int. Ed. Engl. 2017, 56,
REFERENCES
(1)
Barajas, J. F.; Blake-Hedges, J. M.; Bailey, C. B.; Curran,
S.; Keasling, J. D. Synergy between protein and host level
engineering. Synthetic and Systems Biotechnology 2017, 2, 147–166.
(2)
Khosla, C.; Herschlag, D.; Cane, D. E.; Walsh, C. T.
1
740–1745.
19) Jenke-Kodama, H.; Börner, T.; Dittmann, E. Natural
Assembly line polyketide synthases: mechanistic insights and
unsolved problems. Biochemistry 2014, 53, 2875–2883.
(
biocombinatorics in the polyketide synthase genes of the
actinobacterium Streptomyces avermitilis. PLoS Comput. Biol. 2006,
2, e132.
(3)
Yuzawa, S.; Zargar, A.; Pang, B.; Katz, L.; Keasling, J. D.
Commodity chemicals from engineered modular type I polyketide
synthases. 2018, 608, 393–415.
(20) Nguyen, T.; Ishida, K.; Jenke-Kodama, H.; Dittmann, E.;
(4)
Reid, R.; Piagentini, M.; Rodriguez, E.; Ashley, G.;
Gurgui, C.; Hochmuth, T.; Taudien, S.; Platzer, M.; Hertweck, C.;
Piel, Exploiting the mosaic structure of trans-acyltransferase
polyketide synthases for natural product discovery and pathway
dissection. J. Nat. Biotechnol. 2008, 26, 225–233.
Viswanathan, N.; Carney, J.; Santi, D. V.; Hutchinson, C. R.;
McDaniel, R. A model of structure and catalysis for ketoreductase
domains in modular polyketide synthases. Biochemistry 2003, 42,
7
2–79.
(5)
(21) Vander Wood, D. A.; Keatinge-Clay, A. T. The modules
Keatinge-Clay, A. Crystal structure of the erythromycin
of trans-acyltransferase assembly lines redefined with a central acyl
carrier protein. Proteins 2018, 86, 664–675.
polyketide synthase dehydratase. J. Mol. Biol. 2008, 384, 941–953.
6) Kellenberger, L.; Galloway, I. S.; Sauter, G.; Böhm, G.;
Hanefeld, U.; Cortés, J.; Staunton, J.; Leadlay, P. F. A polylinker
(
(22) Yuzawa, S.; Eng, C. H.; Katz, L.; Keasling, J. D. Broad
ACS Paragon Plus Environment