Journal of the American Chemical Society
Page 10 of 12
14. Nelp, M. T.; Zheng, V.; Davis, K. M.; Stiefel, K. J. E.; Groves, J. T.,
Potent Activation of Indoleamine 2,3-Dioxygenase by Polysulfides.
J. Am. Chem. Soc. 2019, 141, 15288.
15. Lim, C. K.; Bilgin, A.; Lovejoy, D. B.; Tan, V.; Bustamante, S.;
Taylor, B. V.; Bessede, A.; Brew, B. J.; Guillemin, G. J., Kynurenine
pathway metabolomics predicts and provides mechanistic insight
into multiple sclerosis progression. Sci. Rep. 2017, 7, 41473.
16. Kandanearatchi, A.; Brew, B. J., The kynurenine pathway and
quinolinic acid: pivotal roles in HIV associated neurocognitive
disorders. FEBS J. 2012, 279, 1366.
indoleamine 2,3-dioxygenase is effectively inhibited by targeting
its apo-form. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 3249.
31. Coletti, A.; Greco, F. A.; Dolciami, D.; Camaioni, E.; Sardella, R.;
Pallotta, M. T.; Volpi, C.; Orabona, C.; Grohmann, U.; Macchiarulo, A.,
Advances in indoleamine 2,3-dioxygenase 1 medicinal chemistry.
Med. Chem. Comm. 2017, 8, 1378.
32. Labadie, B. W.; Bao, R.; Luke, J. J., Reimagining IDO pathway
inhibition in cancer immunotherapy via downstream focus on the
tryptophan-kynurenine-aryl hydrocarbon axis. Clin. Cancer. Res.
2018, 1462.
1
2
3
4
5
6
7
8
9
17. Cuartero, M. I.; de la Parra, J.; García-Culebras, A.; Ballesteros,
I.; Lizasoain, I.; Moro, M. Á., The Kynurenine Pathway in the Acute
and Chronic Phases of Cerebral Ischemia. Curr. Pharm. Des. 2016,
22, 1060.
18. Linetsky, M.; Raghavan, C. T.; Johar, K.; Fan, X.; Monnier, V.
M.; Vasavada, A. R.; Nagaraj, R. H., UVA Light-excited Kynurenines
Oxidize Ascorbate and Modify Lens Proteins through the
Formation of Advanced Glycation End Products: Implications for
Human Lens Aging and Cataract Formation. J. Biol. Chem. 2014,
289, 17111.
19. Qin, Y.; Wang, N.; Zhang, X.; Han, X.; Zhai, X.; Lu, Y., IDO and
TDO as a potential therapeutic target in different types of
depression. Metab. Brain Dis. 2018, 33, 1787.
20. Teraishi, T.; Hori, H.; Sasayama, D.; Matsuo, J.; Ogawa, S.; Ota,
M.; Hattori, K.; Kajiwara, M.; Higuchi, T.; Kunugi, H., 13C-tryptophan
breath test detects increased catabolic turnover of tryptophan
along the kynurenine pathway in patients with major depressive
disorder. Sci. Rep. 2015, 5, 15994.
21. Mazarei, G. a. L., Blair R., Indoleamine 2,3 Dioxygenase as a
Potential Therapeutic Target in Huntington’s Disease. J.
Huntington's Dis. 2015, 4, 109.
22. Boros, F. A.; Klivényi, P.; Toldi, J.; Vécsei, L., Indoleamine 2,3-
dioxygenase as a novel therapeutic target for Huntington’s disease.
Expert Opin. Ther. Targets 2019, 23, 39.
23. Szántó, S.; Koreny, T.; Mikecz, K.; Glant, T. T.; Szekanecz, Z.;
Varga, J., Inhibition of indoleamine 2,3-dioxygenase-mediated
tryptophan catabolism accelerates collagen-induced arthritis in
mice. Arthrit. Res. Ther. 2007, 9, R50.
24. Orabona, C.; Mondanelli, G.; Pallotta, M. T.; Carvalho, A.;
Albini, E.; Fallarino, F.; Vacca, C.; Volpi, C.; Belladonna, M. L.; Berioli,
M. G.; Ceccarini, G.; Esposito, S. M. R.; Scattoni, R.; Verrotti, A.;
Ferretti, A.; De Giorgi, G.; Toni, S.; Cappa, M.; Matteoli, M. C.; Bianchi,
R.; Matino, D.; Iacono, A.; Puccetti, M.; Cunha, C.; Bicciato, S.;
Antognelli, C.; Talesa, V. N.; Chatenoud, L.; Fuchs, D.; Pilotte, L.; Van
den Eynde, B.; Lemos, M. C.; Romani, L.; Puccetti, P.; Grohmann, U.,
Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in
juvenile diabetes. JCI Insight 2018, 3, e96244.
33. Liu, M.; Wang, X.; Wang, L.; Ma, X.; Gong, Z.; Zhang, S.; Li, Y.,
Targeting the IDO1 pathway in cancer: from bench to bedside. J.
Hematol. Oncol. 2018, 11, 100.
34. Yentz, S.; Smith, D., Indoleamine 2,3-Dioxygenase (IDO)
Inhibition as a Strategy to Augment Cancer Immunotherapy.
BioDrugs 2018, 32, 311.
35. Ye, Z.; Yue, L.; Shi, J.; Shao, M.; Wu, T., Role of IDO and TDO in
Cancers and Related Diseases and the Therapeutic Implications. J.
Cancer 2019, 10, 2771.
36. Günther, J.; Däbritz, J.; Wirthgen, E., Limitations and Off-
Target Effects of Tryptophan-Related IDO Inhibitors in Cancer
Treatment. Front. Immunol. 2019, 10, 1801.
37. Opitz, C. A.; Somarribas Patterson, L. F.; Mohapatra, S. R.;
Dewi, D. L.; Sadik, A.; Platten, M.; Trump, S., The therapeutic
potential of targeting tryptophan catabolism in cancer. Br. J. Cancer
2019, DOI: 10.1038/s41416-019-0664-6.
38. Hamilton, G. A., Mechanisms of two- and four-electron
oxidations catalyzed by some metalloenzymes. Adv. Enzymol. Relat.
Areas Mol. Biol. 1969, 32, 55.
39. Nienhaus, K.; Nienhaus, G. U., Different Mechanisms of
Catalytic Complex Formation in Two L-Tryptophan Processing
Dioxygenases. Front. Mol. Biosci. 2018, 4, 94.
40. Chauhan, N.; Thackray, S. J.; Rafice, S. A.; Eaton, G.; Lee, M.;
Efimov, I.; Basran, J.; Jenkins, P. R.; Mowat, C. G.; Chapman, S. K.;
Raven, E. L., Reassessment of the Reaction Mechanism in the Heme
Dioxygenases. J. Am. Chem. Soc. 2009, 131, 4186.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
41. Chung, L. W.; Li, X.; Sugimoto, H.; Shiro, Y.; Morokuma, K.,
Density Functional Theory Study on
a Missing Piece in
Understanding of Heme Chemistry: The Reaction Mechanism for
Indoleamine 2,3-Dioxygenase and Tryptophan 2,3-Dioxygenase. J.
Am. Chem. Soc. 2008, 130, 12299.
42. Chung, L. W.; Li, X.; Sugimoto, H.; Shiro, Y.; Morokuma, K.,
ONIOM Study on a Missing Piece in Our Understanding of Heme
Chemistry: Bacterial Tryptophan 2,3-Dioxygenase with Dual
Oxidants. J. Am. Chem. Soc. 2010, 132, 11993.
43. Basran, J.; Efimov, I.; Chauhan, N.; Thackray, S. J.; Krupa, J. L.;
Eaton, G.; Griffith, G. A.; Mowat, C. G.; Handa, S.; Raven, E. L., The
Mechanism of Formation of N-Formylkynurenine by Heme
Dioxygenases. J. Am. Chem. Soc. 2011, 133, 16251.
44. Basran, J.; Booth, E. S.; Lee, M.; Handa, S.; Raven, E. L., Analysis
of Reaction Intermediates in Tryptophan 2,3-Dioxygenase: A
Comparison with Indoleamine 2,3-Dioxygenase. Biochemistry
2016, 55, 6743.
45. Lewis-Ballester, A.; Batabyal, D.; Egawa, T.; Lu, C.; Lin, Y.;
Marti, M. A.; Capece, L.; Estrin, D. A.; Yeh, S.-R., Evidence for a ferryl
intermediate in a heme-based dioxygenase. Proc. Natl. Acad. Sci. U.
S. A. 2009, 106, 17371.
46. Booth, E. S.; Basran, J.; Lee, M.; Handa, S.; Raven, E. L.,
Substrate Oxidation by Indoleamine 2,3-Dioxygenase: Evidence for
a Common Reaction Mechanism. J. Biol. Chem. 2015, 290, 30924.
47. Yanagisawa, S.; Horitani, M.; Sugimoto, H.; Shiro, Y.; Okada,
N.; Ogura, T., Resonance Raman study on the oxygenated and the
ferryl-oxo species of indoleamine 2,3-dioxygenase during catalytic
turnover. Faraday Discuss. 2011, 148, 239.
25. Niño-Castro, A.; Abdullah, Z.; Popov, A.; Thabet, Y.; Beyer, M.;
Knolle, P.; Domann, E.; Chakraborty, T.; Schmidt, S. V.; Schultze, J.
L., The IDO1-induced kynurenines play a major role in the
antimicrobial effect of human myeloid cells against Listeria
monocytogenes. Innate Immun. 2013, 20, 401.
26. Sas, K.; Szabó, E.; Vécsei, L., Mitochondria, Oxidative Stress
and the Kynurenine System, with
a
Focus on Ageing and
Neuroprotection. Molecules 2018, 23, 191.
27. Hornyák, L.; Dobos, N.; Koncz, G.; Karányi, Z.; Páll, D.; Szabó,
Z.; Halmos, G.; Székvölgyi, L., The Role of Indoleamine-2,3-
Dioxygenase in Cancer Development, Diagnostics, and Therapy.
Front. Immunol. 2018, 9,151.
28. Bilir, C.; Sarisozen, C., Indoleamine 2,3-dioxygenase (IDO):
Only an enzyme or a checkpoint controller? J. Oncol. Sci. 2017, 3,
52.
29. Qian, S.; Zhang, M.; Chen, Q.; He, Y.; Wang, W.; Wang, Z., IDO
as a drug target for cancer immunotherapy: recent developments
in IDO inhibitors discovery. RSC Adv. 2016, 6, 7575.
30. Nelp, M. T.; Kates, P. A.; Hunt, J. T.; Newitt, J. A.; Balog, A.;
Maley, D.; Zhu, X.; Abell, L.; Allentoff, A.; Borzilleri, R.; Lewis, H. A.;
Lin, Z.; Seitz, S. P.; Yan, C.; Groves, J. T., Immune-modulating enzyme
48. Nishinaga, A., Oxygenation Of 3-Substituted Indoles
Catalyzed By Co(II)-Schiff′s Base Complexes. A Model Catalytic
Oxygenation For Tryptophan 2,3-Dioxygenase. Chem. Lett. 1975, 4,
273.
ACS Paragon Plus Environment