4467-06-5Relevant articles and documents
Bottom-Up Construction of Mesoporous Nanotubes from 78-Component Self-Assembled Nanobarrels
Zhang, Guang-Lu,Zhou, Li-Peng,Yuan, Da-Qiang,Sun, Qing-Fu
, p. 9844 - 9848 (2015)
Segmental and continuous hexagonal-packed mesoporous metal-organic nanotubes (MMONTs) with outside diameters of up to 4.5 nm and channel sizes of 2.4 nm were hierarchically constructed by a rational multicomponent self-assembly process involving starting from [L2Pd2(NO3)2] (L=o-phenanthroline or 2,2′-bipyridine) and 4-pyridinyl-3-pyrazole. An unprecedented crystallization-driven cross-linking between discrete nanobarrel building units by spontaneous loss of the capping ligands to form infinite nanotubes was observed. Such a barrel-to-tube transformation provides new possibilities for the fabrication of MMONTs using the solution bottom-up approach.
Suzuki-Miyaura Cross-Coupling Reaction with Potassium Aryltrifluoroborate in Pure Water Using Recyclable Nanoparticle Catalyst
Kawase, Misa,Matsuoka, Kyosuke,Shinagawa, Tsutomu,Hamasaka, Go,Uozumi, Yasuhiro,Shimomura, Osamu,Ohtaka, Atsushi
, p. 57 - 61 (2021/11/13)
This paper describes the Suzuki Miyaura cross-coupling reaction of aryl bromides with potassium aryltrifluoroborates in water catalyzed by linear polystyrene-stabilized PdO nanoparticles (PSPdONPs). The reaction of aryl bromides having electron-withdrawing groups or electron-donating groups took place smoothly to give the corresponding coupling product in high yields. The catalyst recycles five times without significant loss of catalytic activity although a little bit increase in size of PdNPs was observed after the reaction.
Organocatalytic synthesis of (Het)biaryl scaffoldsviaphotoinduced intra/intermolecular C(sp2)-H arylation by 2-pyridone derivatives
Das, Tapas Kumar,Kundu, Mrinalkanti,Mondal, Biswajit,Ghosh, Prasanjit,Das, Sajal
, p. 208 - 218 (2021/12/29)
A uniqueN,O-bidentate ligand 6-oxo-1,6-dihydro-pyridone-2-carboxylic acid dimethylamide (L1) catalyzed direct C(sp2)-H (intra/intermolecular) arylation of unactivated arenes has been developed to expedite access to (Het)biaryl scaffolds under UV-irradiation at room temperature. The protocol tolerated diverse functional groups and substitution patterns, affording the target products in moderate to excellent yields. Mechanistic investigations were also carried out to better understand the reaction pathway. Furthermore, the synthetic applicability of this unified approach has been showcasedviathe construction of biologically relevant 4-quinolone, tricyclic lactam and sultam derivatives.
C(sp2)-C(sp2) Suzuki cross-coupling of arylammonium salts catalyzed by a stable Pd–NHC complex
Tang, Huiling,Liu, Mengna,Zhu, Meiqi,Cui, Benqiang,Shi, Yanhui,Cao, Changsheng
, (2021/09/15)
We have developed the Suzuki-Miyaura cross-coupling of aryl ammonium salts via C–N bond activation catalyzed by an easily prepared and bench-stable palladium-N-heterocyclic carbene complex. The reaction proceeded well under mild conditions with phenylboronic acid, pinacol ester or anhydride and provided yields of products up to 97% with good functional group compatibility. The direct arylation of arylamine can be performed by a two-step one-pot process and the protocol can be performed on the gram scale.
Practical and Regioselective Synthesis of C-4-Alkylated Pyridines
Baran, Phil S.,Choi, Jin,Godineau, Edouard,Laudadio, Gabriele
, p. 11927 - 11933 (2021/08/20)
The direct position-selective C-4 alkylation of pyridines has been a long-standing challenge in heterocyclic chemistry, particularly from pyridine itself. Historically this has been addressed using prefunctionalized materials to avoid overalkylation and mixtures of regioisomers. This study reports the invention of a simple maleate-derived blocking group for pyridines that enables exquisite control for Minisci-type decarboxylative alkylation at C-4 that allows for inexpensive access to these valuable building blocks. The method is employed on a variety of different pyridines and carboxylic acid alkyl donors, is operationally simple and scalable, and is applied to access known structures in a rapid and inexpensive fashion. Finally, this work points to an interesting strategic departure for the use of Minisci chemistry at the earliest possible stage (native pyridine) rather than current dogma that almost exclusively employs Minisci chemistry as a late-stage functionalization technique.
Base-Activated Latent Heteroaromatic Sulfinates as Nucleophilic Coupling Partners in Palladium-Catalyzed Cross-Coupling Reactions
Blakemore, David C.,Cook, Xinlan A. F.,Moses, Ian B.,Pantaine, Lo?c R. E.,Sach, Neal W.,Shavnya, Andre,Willis, Michael C.
, p. 22461 - 22468 (2021/09/09)
Heteroaromatic sulfinates are effective nucleophilic reagents in Pd0-catalyzed cross-coupling reactions with aryl halides. However, metal sulfinate salts can be challenging to purify, solubilize in reaction media, and are not tolerant to multi-step transformations. Here we introduce base-activated, latent sulfinate reagents: β-nitrile and β-ester sulfones. We show that under the cross-coupling conditions, these species generate the sulfinate salt in situ, which then undergo efficient palladium-catalyzed desulfinative cross-coupling with (hetero)aryl bromides to deliver a broad range of biaryls. These latent sulfinate reagents have proven to be stable through multi-step substrate elaboration, and amenable to scale-up.
METHOD FOR SYNTHESIZING BORONATE ESTER COMPOUND, SODIUM SALT OF BORONATE ESTER COMPOUND, AND METHOD FOR SYNTHESIZING THE SAME
-
Paragraph 0123, (2021/03/13)
An object is to establish a technology with which a boronate ester compound can be easily and efficiently synthesized at a low cost with a small number of steps without the need for a complex chemical method and reagents that need to be carefully handled. A further object is to establish a sodium salt of a boronate ester compound that is a novel compound and a technology for synthesizing the sodium salt of a boronate ester compound. Provided are a sodium salt of a boronate ester compound and a method for synthesizing a boronate ester compound or a sodium salt of a boronate ester compound that includes reacting, in a reaction solvent, an organic chloride with a dispersion product obtained by dispersing sodium in a dispersion solvent to obtain an organic sodium compound, and reacting the obtained organic sodium compound with a borate ester compound to obtain a boronate ester compound or a sodium salt of a boronate ester compound.
Nickel-Catalyzed Reductive 2-Pyridination of Aryl Iodides with Difluoromethyl 2-Pyridyl Sulfone
Miao, Wenjun,Ni, Chuanfa,Xiao, Pan,Jia, Rulong,Zhang, Wei,Hu, Jinbo
supporting information, p. 711 - 715 (2021/01/26)
A novel nickel-catalyzed reductive cross-coupling between aryl iodides and difluoromethyl 2-pyridyl sulfone (2-PySO2CF2H) enables C(sp2)-C(sp2) bond formation through selective C(sp2)-S bond cleavage, which demonstrates the new reactivity of 2-PySO2CF2H reagent. This method employs readily available nickel catalyst and sulfones as cross-electrophile coupling partners, providing facile access to biaryls under mild reaction conditions without pregeneration of arylmetal reagents.
Rhodium-Catalyzed Additive-Free C?H Ethoxycarbonylation of (Hetero)Arenes with Diethyl Dicarbonate as a CO Surrogate
Kawai, Yuya,Liao, Yumeng,Matsuda, Takanori,Suzuki, Hirotsugu
supporting information, p. 4938 - 4942 (2021/09/30)
A rhodium-catalyzed C(sp2)-H ethoxycarbonylation of indoles and arylpyridines using diethyl dicarbonate was developed. The catalytic process features an additive-free ethoxycarbonylation reaction, in which only ethanol and CO2 are produced as byproducts, providing a CO-free and operationally simple protocol. The introduced ethoxycarbonyl group is easily transformed into other ester and amide functionalities in a single step. Moreover, the reaction can be successfully applied on gram scale, and allows for the efficient synthesis of indole-2-carboxylic acid esters and isophthalates.
New Nickel-Based Catalytic System with Pincer Pyrrole-Functionalized N-Heterocyclic Carbene as Ligand for Suzuki-Miyaura Cross-Coupling Reactions
Guo, Zhifo,Lei, Xiangyang
supporting information, (2021/09/11)
A new catalytic system with Ni(NO3)2·6H2O as the catalyst and a pincer pyrrole-functionalized N-heterocyclic carbene as the ligand was employed in the Suzuki-Miyaura cross-coupling reactions of aryl iodides with arylboronic acids. With 5 mol% catalyst, the catalytic reactions proceeded at 160 °C, giving coupling products in isolated yields of up to 94% in short reaction times (1-4 h). The system worked efficiently with aryl iodides bearing electron-donating or electron-withdrawing groups and arylboronic acids with electron-donating groups. Steric effects were observed for both aryl iodides and arylboronic acids. It is proposed that the reactions underwent a Ni(I)/Ni(III) catalytic cycle.