698-87-3Relevant articles and documents
Regiodivergent Reductive Opening of Epoxides by Catalytic Hydrogenation Promoted by a (Cyclopentadienone)iron Complex
De Vries, Johannes G.,Gandini, Tommaso,Gennari, Cesare,Jiao, Haijun,Pignataro, Luca,Stadler, Bernhard M.,Tadiello, Laura,Tin, Sergey
, p. 235 - 246 (2022/01/03)
The reductive opening of epoxides represents an attractive method for the synthesis of alcohols, but its potential application is limited by the use of stoichiometric amounts of metal hydride reducing agents (e.g., LiAlH4). For this reason, the corresponding homogeneous catalytic version with H2 is receiving increasing attention. However, investigation of this alternative has just begun, and several issues are still present, such as the use of noble metals/expensive ligands, high catalytic loading, and poor regioselectivity. Herein, we describe the use of a cheap and easy-To-handle (cyclopentadienone)iron complex (1a), previously developed by some of us, as a precatalyst for the reductive opening of epoxides with H2. While aryl epoxides smoothly reacted to afford linear alcohols, aliphatic epoxides turned out to be particularly challenging, requiring the presence of a Lewis acid cocatalyst. Remarkably, we found that it is possible to steer the regioselectivity with a careful choice of Lewis acid. A series of deuterium labeling and computational studies were run to investigate the reaction mechanism, which seems to involve more than a single pathway.
The solvent determines the product in the hydrogenation of aromatic ketones using unligated RhCl3as catalyst precursor
Bartling, Stephan,Chakrabortty, Soumyadeep,De Vries, Johannes G.,Kamer, Paul C. J.,Lund, Henrik,Müller, Bernd H.,Rockstroh, Nils
, p. 7608 - 7616 (2021/12/13)
Alkyl cyclohexanes were synthesized in high selectivity via a combined hydrogenation/hydrodeoxygenation of aromatic ketones using ligand-free RhCl3 as pre-catalyst in trifluoroethanol as solvent. The true catalyst consists of rhodium nanoparticles (Rh NPs), generated in situ during the reaction. A range of conjugated as well as non-conjugated aromatic ketones were directly hydrodeoxygenated to the corresponding saturated cyclohexane derivatives at relatively mild conditions. The solvent was found to be the determining factor to switch the selectivity of the ketone hydrogenation. Cyclohexyl alkyl-alcohols were the products using water as a solvent.
Discovery of New Carbonyl Reductases Using Functional Metagenomics and Applications in Biocatalysis
Newgas, Sophie A.,Jeffries, Jack W. E.,Moody, Thomas S.,Ward, John M.,Hailes, Helen C.
, p. 3044 - 3052 (2021/04/26)
Enzyme discovery for use in the manufacture of chemicals, requiring high stereoselectivities, continues to be an important avenue of research. Here, a sequence directed metagenomics approach is described to identify short chain carbonyl reductases. PCR from a metagenomic template generated 37 enzymes, with an average 25% sequence identity, twelve of which showed interesting activities in initial screens. Six of the most productive enzymes were then tested against a panel of 21 substrates, including bulkier substrates that have been noted as challenging in biocatalytic reductions. Two enzymes were selected for further studies with the Wieland Miescher ketone. Notably, enzyme SDR-17, when co-expressed with a co-factor recycling system produced the anti-(4aR,5S) isomer in excellent isolated yields of 89% and 99% e.e. These results demonstrate the viability of a sequence directed metagenomics approach for the identification of multiple homologous sequences with low similarity, that can yield highly stereoselective enzymes with applicability in industrial biocatalysis. (Figure presented.).
Reduction of carbonyl compounds via hydrosilylation catalyzed by well-defined PNP-Mn(I) hydride complexes
Weber, Stefan,Iebed, Dina,Glatz, Mathias,Kirchner, Karl
, p. 635 - 639 (2021/06/17)
Reduction reactions of unsaturated compounds are fundamental transformations in synthetic chemistry. In this context, the reduction of polarized double bonds such as carbonyl or C=C motifs can be achieved by hydrogenation reactions. We describe here a highly chemoselective Mn(I)-based PNP pincer catalyst for the hydrosilylation of aldehydes and ketones employing polymethylhydrosiloxane (PMHS) as inexpensive hydrogen donor. Graphic abstract: [Figure not available: see fulltext.]
Structural characterization of a square planar Ni(II) complex and its application as a catalyst for the transfer hydrogenation of ketones
Bala, Muhammad D.,Kadafour, Attahir N. W.
, (2021/12/01)
A new 2-hydroxy-1-naphthaldehyde Schiff base derived nickel(II) complex (4) was synthesized and fully characterized. Analysis of the structure of 4 by single-crystal X-ray diffraction shows two chelating Schiff base ligands bound to nickel in a trans [O∧N(Ni2+)N∧O] fashion. Hence, in a molecule of 4, two ligands are four coordinate to a Ni(II) center through the imine nitrogen and naphthyloxyl oxygen atoms. This coordination mode resulted in a square planar complex that is stabilized in the solid-state by a network of intermolecular O-H···N hydrogen bonds between neighboring molecules. The 1H NMR data showed the loss of the hydroxyl (OH) proton signal and an upfield shift of the metal-bound imine (-NH) proton signal, while the IR data also showed a lower energy shift in the absorption frequency of the imine (C = N) bond due to back donation from the coordinated Ni(II) center. As a catalyst for the transfer hydrogenation of a range of ketones, 4 showed good catalytic activity at a very low concentration of 0.1 mol% with 2-propanol as the model substrate. The catalyst is also effective for various related ketone substrates bearing a range of steric and electronic regulating groups.
Enantiomerically Enriched α-Borylzinc Reagents by Nickel-Catalyzed Carbozincation of Vinylboronic Esters
Chen, Jingjia,Hu, Weipeng,Jin, Jing,Lovinger, Gabriel J.,Morken, James P.,Zhang, Chenlong
supporting information, p. 14189 - 14195 (2021/09/11)
In this paper is described a synthesis of enantiomerically enriched, configurationally stable organozinc reagents by catalytic enantioselective carbozincation of a vinylboronic ester. This process furnishes enantiomerically enriched α-borylzinc intermediates that are shown to undergo stereospecific reactions, producing enantioenriched secondary boronic ester products. The properties of the intermediate α-borylzinc reagent are probed and the synthetic utility of the products is demonstrated by application to the synthesis of (-)-aphanorphine and (-)-enterolactone.
Primary Alcohols via Nickel Pentacarboxycyclopentadienyl Diamide Catalyzed Hydrosilylation of Terminal Epoxides
Lambert, Tristan H.,Steiniger, Keri A.
supporting information, p. 8013 - 8017 (2021/10/25)
The efficient and regioselective hydrosilylation of epoxides co-catalyzed by a pentacarboxycyclopentadienyl (PCCP) diamide nickel complex and Lewis acid is reported. This method allows for the reductive opening of terminal, monosubstituted epoxides to form unbranched, primary alcohols. A range of substrates including both terminal and nonterminal epoxides are shown to work, and a mechanistic rationale is provided. This work represents the first use of a PCCP derivative as a ligand for transition-metal catalysis.
Rhodium-Catalyzed Regiodivergent Synthesis of Alkylboronates via Deoxygenative Hydroboration of Aryl Ketones: Mechanism and Origin of Selectivities
Zhang, Bing,Xu, Xin,Tao, Lei,Lin, Zhenyang,Zhao, Wanxiang
, p. 9495 - 9505 (2021/08/04)
Here, we report an efficient rhodium-catalyzed deoxygenative borylation of ketones to synthesize alkylboronates, in which the regioselectivity can be switched by the choice of the ligand. The linear alkylboronates were obtained exclusively in the presence of P(nBu)3, and PPh2Me favored the formation of branched alkylboronates. The protocol also allows access to 1,1,2-triboronates from the readily available ketones. Mechanistic studies suggest that this Rh-catalyzed deoxygenative borylation of ketones goes through an alkene intermediate, which undergoes regiodivergent hydroboration to afford linear and branched alkylboronates. The different steric effects of PPh2Me and P(nBu)3 were found to be responsible for product selectivity by density functional theory calculations. The alkene intermediate can alternatively undergo sequential dehydrogenative borylation and hydroboration to deliver the triboronates.
g-C3N4/metal halide perovskite composites as photocatalysts for singlet oxygen generation processes for the preparation of various oxidized synthons
Corti, Marco,Chiara, Rossella,Romani, Lidia,Mannucci, Barbara,Malavasi, Lorenzo,Quadrelli, Paolo
, p. 2292 - 2298 (2021/04/12)
g-C3N4/metal halide perovskite composites were prepared and used for the first time as photocatalysts forin situ1O2generation to perform hetero Diels-Alder, ene and oxidation reactions with suitable dienes and alkenes. The standardized methodology was made applicable to a variety of olefinic substrates. The scope of the method is finely illustrated and the reactions afforded desymmetrized hydroxy-ketone derivatives, unsaturated ketones and epoxides. Some limitations were also observed, especially in the case of the alkene oxidations, and poor chemoselectivity was somewhere observed in this work which is the first application of MHP-based composites forin situ1O2generation. The experimental protocol can be used as a platform to further expand the knowledge and applicability of MHPs to organic reactions, since perovskites offer a rich variety of tuning strategies which may be explored to improve reaction yields and selectivities.
BiCl3-Facilitated removal of methoxymethyl-ether/ester derivatives and DFT study of -O-C-O- bond cleavage
Pacherille, Angela,Tuga, Beza,Hallooman, Dhanashree,Dos Reis, Isaac,Vermette, Mélodie,Issack, Bilkiss B.,Rhyman, Lydia,Ramasami, Ponnadurai,Sunasee, Rajesh
supporting information, p. 7109 - 7116 (2021/05/03)
A simple method for the cleavage of methoxymethyl (MOM)-ether and ester derivatives using bismuth trichloride (BiCl3) is described. The alkyl, alkenyl, alkynyl, benzyl and anthracene MOM ether derivatives, as well as MOM esters of both aliphatic and aromatic carboxylic acids, were deprotected in good yields. To better understand the molecular roles of BiCl3and water for MOM cleavage, two possible binding pathways were investigated using the density functional theory (DFT) method. The theoretical results indicate the differential initial binding site preferences of phenolic and alcoholic MOM substrates to the Bi atom and suggest that water plays a key role in facilitating the cleavage of the MOM group.