1973-22-4Relevant articles and documents
Hydrogenation reaction method
-
Paragraph 0034; 0153-0156, (2020/05/14)
The invention relates to a hydrogenation reaction method, and belongs to the technical field of organic synthesis. The hydrogenation reaction method provided by the invention comprises the following steps: carrying out a hydrogen transfer reaction on a hydrogen acceptor compound, pinacol borane and a catalyst in a solvent in the presence of proton hydrogen, so that the hydrogen acceptor compound is subjected to a hydrogenation reaction; the catalyst is one or more than two of a palladium catalyst, an iridium catalyst and a rhodium catalyst; the hydrogen acceptor compound comprises one or morethan two functional groups of carbon-carbon double bonds, carbon-carbon triple bonds, carbon-oxygen double bonds, carbon-nitrogen double bonds, nitrogen-nitrogen double bonds, nitryl, carbon-nitrogentriple bonds and epoxy. The method is mild in reaction condition, easy to operate, high in yield, short in reaction time, wide in substrate application range, suitable for carbon-carbon double bonds,carbon-carbon triple bonds, carbon-oxygen double bonds, carbon-nitrogen double bonds, nitrogen-nitrogen double bonds, nitryl, carbon-nitrogen triple bonds and epoxy functional groups, good in selectivity and high in reaction specificity.
Generalized Chemoselective Transfer Hydrogenation/Hydrodeuteration
Wang, Yong,Cao, Xinyi,Zhao, Leyao,Pi, Chao,Ji, Jingfei,Cui, Xiuling,Wu, Yangjie
supporting information, p. 4119 - 4129 (2020/08/10)
A generalized, simple and efficient transfer hydrogenation of unsaturated bonds has been developed using HBPin and various proton reagents as hydrogen sources. The substrates, including alkenes, alkynes, aromatic heterocycles, aldehydes, ketones, imines, azo, nitro, epoxy and nitrile compounds, are all applied to this catalytic system. Various groups, which cannot survive under the Pd/C/H2 combination, are tolerated. The activity of the reactants was studied and the trends are as follows: styrene'diphenylmethanimine'benzaldehyde'azobenzene'nitrobenzene'quinoline'acetophenone'benzonitrile. Substrates bearing two or more different unsaturated bonds were also investigated and transfer hydrogenation occurred with excellent chemoselectivity. Nano-palladium catalyst in situ generated from Pd(OAc)2 and HBPin extremely improved the TH efficiency. Furthermore, chemoselective anti-Markovnikov hydrodeuteration of terminal aromatic olefins was achieved using D2O and HBPin via in situ HD generation and discrimination. (Figure presented.).
Enantioselective hydroformylation of 2- and 4-substituted styrenes with PtCl2[(R)-BINAP] + SnCl2‘in situ’ catalyst
Pongrácz, Péter,Kollár, László
, p. 118 - 123 (2016/10/25)
Two sets of styrenes possessing various substituents either in ortho or para position were hydroformylated in the presence of ‘in situ’ catalyst formed from PtCl2[(R)-BINAP] and tin(II) chloride. The reversal of the absolute configuration of the preferred enantiomers was observed using both sets of substrates by the variation of the reaction temperature in the range of 40–100 °C. In case of the 4-substituted styrenes, the reversal temperature of the enantioselectivity shows correlation with the Hammett substituent constants, i.e., with the electron donor or electron acceptor properties of the para-substituents. This phenomenon was explained by the reversible formation of the Pt-branched alkyl intermediates, leading to the corresponding (R)- and (S)-enantiomers of 2-arylpropanals. Strong substituent effect on the regioselectivity was observed in the hydroformylation of 2-substituted styrenes: the presence of substituents characterised by larger steric parameter resulted in the highly favoured formation of the linear aldehyde. For instance, regioselectivities of 45%, 22% and 7% towards branched aldehyde were obtained with styrene, 2-fluoro- and 2-bromostyrene, respectively, at 80 °C reaction temperature. In addition to the characteristic change of regioselectivity, the reversal of absolute configuration as a function of reaction temperature was also observed.
On the ionizing properties of supercritical carbon dioxide: Uncatalyzed electrophilic bromination of aromatics
Delgado-Abad, Thais,Martnez-Ferrer, Jaime,Reig-Lpez, Javier,Mello, Rossella,Acerete, Rafael,Asensio, Gregorio,Gonzlez-Nez, Mara Elena
, p. 51016 - 51021 (2015/01/16)
Supercritical carbon dioxide (scCO2), a solvent with a zero dipole moment, low dielectric constant, and no hydrogen bonding behavior, is a suitable medium to perform the uncatalyzed electrophilic bromination of weakly activated aromatics with no interference of radical pathways. The ability of scCO2 to promote these reactions matches those of strongly ionizing solvents such as aqueous acetic and trifluoroacetic acids. Conversely, carbon tetrachloride, with similar polarity parameters to scCO2, leads exclusively to side chain functionalization. The strong quadrupole moment, and the acidic, but non basic, Lewis character of carbon dioxide, are proposed as key factors for the singular performance of scCO2 in reactions involving highly polar and ionic intermediates.
A sustainable process for catalytic oxidative bromination with molecular oxygen
Huang, Zhijun,Li, Fengbo,Chen, Bingfeng,Lu, Tao,Yuan, Yin,Yuan, Guoqing
, p. 1337 - 1340 (2013/09/12)
Workin′ in a bromine: A palladium-polyoxometalate amphiphilic hybrid material serves as catalyst for oxidative brominations. The emulsion-based process avoids the use of toxic and corrosive bromination agents such as Br 2 or HBr, and uses molecular oxygen as oxidant. The only side product is water, which is also the reaction medium. The catalyst offers good recoverability and recyclability. Copyright
Metal and H2O2 free aerobic oxidative aromatic halogenation with [RNH3+] [NO3-]/HX and [BMIM(SO3H)][NO3)x(X)y] (X = Br, Cl) as multifunctional ionic liquids
Prebil, Rok,Laali, Kenneth K.,Stavber, Stojan
supporting information, p. 2108 - 2111 (2013/06/05)
Novel multifunctional ionic liquids (ILs) are generated by addition of HBr or HCl to alkylammonium nitrates ([RNH3+] [NO 3-]) and to 3-methyl-1-(butyl-4-sulfonyl)imidazolium nitrate ([BMIM(SO3H)][NO3]). The resulting [RNH 3+] [NO3-]/HX and mono (3-methyl-1-(butyl-4-sulfonyl)imidazolium) monohalogenide mononitrate ([BMIM(SO3H)][NO3)x(X)y] (X = Br, Cl)) systems act as solvent and promoter for aerobic oxidative halogenation of arenes under mild conditions in high yields that can be repeated over several cycles.
Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow
Hudson, Reuben,Hamasaka, Go,Osako, Takao,Yamada, Yoichi M. A.,Li, Chao-Jun,Uozumi, Yasuhiro,Moores, Audrey
, p. 2141 - 2148 (2013/09/24)
Highly efficient catalytic hydrogenations are achieved by using amphiphilic polymer-stabilized Fe(0) nanoparticle (Fe NP) catalysts in ethanol or water in a flow reactor. Alkenes, alkynes, aromatic imines and aldehydes were hydrogenated nearly quantitatively in most cases. Aliphatic amines and aldehydes, ketone, ester, arene, nitro, and aryl halide functionalities are not affected, which provides an interesting chemoselectivity. The Fe NPs used in this system are stabilized and protected by an amphiphilic polymer resin, providing a unique system that combines long-term stability and high activity. The NPs were characterized by TEM of microtomed resin, which established that iron remains in the zero-valent form despite exposure to water and oxygen. The amphiphilic resin-supported Fe(0) nanoparticles in water and in flow provide a novel, robust, cheap and environmentally benign catalyst system for chemoselective hydrogenations.
Iridium-catalyzed borylation of secondary benzylic C-H bonds directed by a hydrosilane
Cho, Seung Hwan,Hartwig, John F.
supporting information, p. 8157 - 8160 (2013/07/05)
Most functionalizations of C-H bonds by main-group reagents occur at aryl or methyl groups. We describe a highly regioselective borylation of secondary benzylic C-H bonds catalyzed by an iridium precursor and 3,4,7,8-tetramethyl-1, 10-phenanthroline as the ligand. The reaction is directed to the benzylic position by a hydrosilyl substituent. This hydrosilyl directing group is readily deprotected or transformed to other functional groups after the borylation reaction, providing access to a diverse set of secondary benzylboronate esters by C-H borylation chemistry.
N-alkyl functionalised expanded ring N-heterocyclic carbene complexes of rhodium(i) and iridium(i): Structural investigations and preliminary catalytic evaluation
Dunsford, Jay J.,Tromp, Dorette S.,Cavell, Kingsley J.,Elsevier, Cornelis J.,Kariuki, Benson M.
, p. 7318 - 7329 (2013/08/26)
A series of new N-alkyl functionalised 6- and 7-membered expanded ring N-heterocyclic carbene (NHC) pro-ligands 3-6 and their corresponding complexes of rhodium(i) and iridium(i), [M(NHC)(COD)Cl] 7-14 and [M(NHC)(CO) 2Cl] 15-22 are described. The complexes have been characterised by 1H and 13C{1H} NMR, mass spectrometry, IR and X-ray diffraction. It is noted from X-ray diffraction studies that the N-alkyl substituents are found to orientate themselves away from the metal centre due to unfavourable steric interactions resulting in low percent buried volume (%Vbur) values in the solid state. The heterocycle ring size is also found to dictate the spatial orientation of the N-alkyl substituents in the neopentyl functionalised derivatives 10 and 14. The 7-membered derivative 14 allows for a conformational 'twist' of the heterocycle ring with the N-alkyl substituents adopting a mutually trans configuration with respect to each other, while the more rigid 6-membered system 10 does not allow for this conformational 'twist' and consequently the N-alkyl substituents adopt a mutually cis configuration. The σ-donor function of this new class of expanded ring NHC ligand has also been probed by measured IR stretching frequencies of the [M(NHC)(CO)2Cl] complexes 15-22. A preliminary catalytic survey of the hydrogenation of functionalised alkenes with molecular hydrogen under mild conditions has also been undertaken with complex 10, affording an insight into the application of large ring NHC ancillary ligands bearing N-alkyl substituents in hydrogenation transformations.
Aromatic substitution in ball mills: Formation of aryl chlorides and bromides using potassium peroxomonosulfate and NaX
Schmidt, Robert,Stolle, Achim,Ondruschka, Bernd
, p. 1673 - 1679 (2013/02/22)
Aryl chlorides and bromides are formed from arenes in a ball mill using KHSO5 and NaX (X = Cl, Br) as oxidant and halogen source, respectively. Investigation of the reaction parameters identified operating frequency, milling time, and the number of milling balls as the main influencing variables, as these determine the amount of energy provided to the reaction system. Assessment of liquid-assisted grinding conditions revealed, that the addition of solvents has no advantageous effect in this special case. Preferably activated arenes are halogenated, whereby bromination afforded higher product yields than chlorination. Most often reactions are regio- and chemoselective, since p-substitution was preferred and concurring side-chain oxidation of alkylated arenes by KHSO5 was not observed. The Royal Society of Chemistry.