2142-69-0Relevant articles and documents
Intramolecular One-Carbon Homologation of Unstrained Ketones via C-C Activation-Enabled 1,1-Insertion of Alkenes
Huang, Jiangkun,Zhang, Rui,Wu, Xiuli,Dong, Guangbin,Xia, Ying
supporting information, p. 2436 - 2440 (2022/04/07)
Here, we describe the development of a Rh-catalyzed intramolecular one-carbon homologation of unstrained aryl ketones through a formal 1,1-insertion process of olefins, enabled by temporary directing group (TDG)-aided C-C activation. The reaction provides a distinct approach to access various substituted 1-indanones. Computational mechanistic studies reveal that the formal 1,1-insertion is realized by a selective C(sp2)-C(sp3) activation and turnover limiting 2,1-insertion into the alkene, followed by a facile β-H elimination and reinsertion process.
Selective Activation of Unstrained C(O)-C Bond in Ketone Suzuki-Miyaura Coupling Reaction Enabled by Hydride-Transfer Strategy
Zhong, Jing,Zhou, Wuxin,Yan, Xufei,Xia, Ying,Xiang, Haifeng,Zhou, Xiangge
supporting information, p. 1372 - 1377 (2022/02/23)
A Rh(I)-catalyzed ketone Suzuki-Miyaura coupling reaction of benzylacetone with arylboronic acid is developed. Selective C(O)-C bond activation, which employs aminopyridine as a temporary directing group and ethyl vinyl ketone as a hydride acceptor, occurs on the alkyl chain containing a β-position hydrogen. A series of acetophenone products were obtained in yields up to 75%.
Stepwise benzylic oxygenation via uranyl-photocatalysis
Hu, Deqing,Jiang, Xuefeng
supporting information, p. 124 - 129 (2022/01/19)
Stepwise oxygenation at the benzylic position (1°, 2°, 3°) of aromatic molecules was comprehensively established under ambient conditions via uranyl photocatalysis to produce carboxylic acids, ketones, and alcohols, respectively. The accuracy of the stepwise oxygenation was ensured by the tunability of catalytic activity in uranyl photocatalysis, which was adjusted by solvents and additives demonstrated through Stern–Volmer analysis. Hydrogen atom transfer between the benzylic position and the uranyl catalyst facilitated oxygenation, further confirmed by kinetic studies. Considerably improved efficiency of flow operation demonstrated the potential for industrial synthetic application.
Decatungstate-mediated solar photooxidative cleavage of CC bonds using air as an oxidant in water
Du, Dongdong,Luo, Junfei,Shi, Sanshan,Xie, Pan,Xue, Cheng
, p. 5936 - 5943 (2021/08/23)
With the increasing attention for green chemistry and sustainable development, there has been much interest in searching for greener methods and sources in organic synthesis. However, toxic additives or solvents are inevitably involved in most organic transformations. Herein, we first report the combination of direct utilization of solar energy, air as the oxidant and water as the solvent for the selective cleavage of CC double bonds in aryl olefins. Various α-methyl styrenes, diaryl alkenes as well as terminal styrenes are well tolerated in this green and sustainable strategy and furnished the desired carbonyl products in satisfactory yields. Like heterogeneous catalysis, this homogeneous catalytic system could also be reused and it retains good activity even after repeating three times. Mechanism investigations indicated that both O2- and 1O2 were involved in the reaction. Based on these results, two possible mechanisms, including the electron transfer pathway and the energy transfer pathway, were proposed.
Linkage engineering mediated carriers transfer and surface reaction over carbon nitride for enhanced photocatalytic activity
Chen, Peng,Li, Gen,Liu, Fei,Wang, Qian,Wang, Qiuchen,Yang, Shilian,Yin, Shuang-Feng,Zhao, Tianxiang
, p. 21732 - 21740 (2021/10/14)
Rational tailoring of the atomic structure of photocatalysts with multiple functions to enhance the carrier transfer efficiency and surface activation of carbon nitride (C3N4) is promising and a challenge. Here, we make the first report of a facile strategy to construct amphiphilic carbon and C-O-C chain linked terminal melem units in functional carbon nitride (COCN)viacopolymerizing formaldehyde with melem. By integrating the amphiphilic carrier bridge of carbon and C-O-C chains into the framework, the photogenerated carrier mobility and activated species (superoxide radicals, singlet oxygen) as well as surface interaction are significantly improved. Consequently, the optimal tailoring of C3N4attains superior photocatalytic activity for hydrogen production (34.9 μmol h?1) and selective oxidation of sulfide to sulfoxide using air (nearly 100% conversion and selectivity after 3 h of illumination), which is about 7 times higher than that of pristine C3N4. This study provides deep insight into and strategies for the atomic tailoring of carrier transfer and surface reaction over organic-based photocatalysts.
Iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabled aldehyde C-H methylation
Gong, Pei-Xue,Xu, Fangning,Cheng, Lu,Gong, Xu,Zhang, Jie,Gu, Wei-Jin,Han, Wei
supporting information, p. 5905 - 5908 (2021/06/18)
A practical and general iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabling aldehyde C-H methylation for the synthesis of methyl ketones has been developed. This mild, operationally simple method uses ambient air as the sole oxidant and tolerates sensitive functional groups for the late-stage functionalization of complex natural-product-derived and polyfunctionalized molecules.
The intramolecular reaction of acetophenoneN-tosylhydrazone and vinyl: Br?nsted acid-promoted cationic cyclization toward polysubstituted indenes
Wang, Zhixin,Li, Yang,Chen, Fan,Qian, Peng-Cheng,Cheng, Jiang
, p. 1810 - 1813 (2021/02/27)
In the presence of TsNHNH2, a Br?nsted acid-promoted intramolecular cyclization ofo-(1-arylvinyl) acetophenone derivatives was developed, leading to polysubstituted indenes with complexity and diversity in moderate to excellent yields. In sharp contrast with either the radical or carbene involved cyclization of aldehydicN-tosylhydrazone with vinyl, a cationic cyclization pathway was involved, whereN-tosylhydrazone served as an electrophile and alkylation reagent during this transformation.
α-Oxocarboxylic Acids as Three-Carbon Insertion Units for Palladium-Catalyzed Decarboxylative Cascade Synthesis of Diverse Fused Heteropolycycles
Zhou, Liwei,Qiao, Shujia,Zhou, Fengru,Xuchen, Xinyu,Deng, Guobo,Yang, Yuan,Liang, Yun
, p. 2878 - 2883 (2021/05/05)
A novel palladium-catalyzed decarboxylative cascade cyclization for the assembly of diverse fused heteropolycycles by employing α-oxocarboxylic acids as three-carbon insertion units is reported. This protocol enables the synthesis of isoquinolinedione- and indolo[2,1-a]isoquinolinone-fused benzocycloheptanones in moderate to good yields by the use of different aryl iodides, including alkene-tethered 2-iodobenzamides and 2-(2-iodophenyl)-1H-indoles. Notably, the approach achieves simultaneous construction of both six- and seven-membered rings via sequential intramolecular carbopalladation, C-H activation, and decarboxylation.
Divergent Access to Benzocycles through Copper-Catalyzed Borylative Cyclizations
Yoon, Wan Seok,Han, Jung Tae,Yun, Jaesook
, p. 4953 - 4959 (2021/09/14)
A copper-catalyzed chemodivergent approach to five- and six-membered benzocycles from dienyl arenes tethered with a ketone has been developed. Through proper choice of coordinating ligands and catalytic conditions, copper-catalyzed borylative cyclization of a single dienyl arene can be diverted to two different pathways, leading to indanols and dihydronaphthalenols with high stereoselectivity. The chiral bidentate bisphosphine ligand (S,S)-Ph-BPE was optimal for asymmetric copper-allyl addition to a tethered ketone via a boat-like transition state, whereas NHC ligands led to boro-allyl addition producing indanols with high diastereoselectivity. (Figure presented.).
Atmosphere-Controlled Palladium-Catalyzed Divergent Decarboxylative Cyclization of 2-Iodobiphenyls and α-Oxocarboxylic Acids
Zhou, Liwei,Sun, Mingjie,Zhou, Fengru,Deng, Guobo,Yang, Yuan,Liang, Yun
, p. 7150 - 7155 (2021/09/18)
A novel palladium-catalyzed divergent decarboxylative cyclization of 2-iodobiphenyls and α-oxocarboxylic acids utilizing the atmosphere as a controlled switch is reported. Under the protection of a nitrogen atmosphere, tribenzotropones are synthesized by a [4 + 3] decarboxylative cyclization. Employing a palladium/O2 system enables a [4 + 2] decarboxylative cyclization to assemble triphenylenes. Notably, preliminary mechanistic studies indicate that the formation of triphenylenes involves a double decarboxylation.