455-38-9Relevant articles and documents
On the difference in the results of reductive defluorination of pentafluorobenzoic acid by sodium and zinc in liquid ammonia medium
Laev,Laev, Sergey S.,Shteingarts,Shteingarts, Vitalij D.,Bilkis,Bilkis, Isaak I.
, p. 4655 - 4658 (1995)
Under the reduction of pentafluorobenzoic acid in liquid ammonia by sodium the deep defluorination with removal of three or more fluorine atoms has been observed, whereas with zinc only the product of para-defluorination has been obtained.
Aerobic oxidation of aldehydes to carboxylic acids catalyzed by recyclable ag/c3 n4 catalyst
Wu, Chaolong,Yao, Xiaoquan,Yu, Min,Zhou, Li,Zhu, Li
, p. 167 - 175 (2021/03/19)
The oxidation of aldehydes is an efficient methodology for the synthesis of carboxylic acids. Herein we hope to report a simple, efficient and recyclable protocol for aerobic oxidation of aldehydes to carboxylic acid by using C3N4 supported silver nanoparticles (Ag/C3N4) as a catalyst in aqueous solution under mild conditions. Under standard conditions, the corresponding carboxylic acids can be obtained in good to excellent yields. In addition, Ag/C3N4 is convenient for recovery and could be reused three times with satisfactory yields.
Meso-Carbazole substituted palladium porphyrins: Efficient catalysts for visible light induced oxidation of aldehydes
Janaagal, Anu,Pandey, Vijayalakshmi,Sabharwal, Sudhir,Gupta, Iti
, p. 571 - 581 (2021/05/05)
The A3B and A2B2 type porphyrins having N-butylcarbazole and p-cyanophenyl groups are synthesized and characterized. Their palladium complexes have also been prepared and utilized as catalysts for the photo-oxidation reactions of aromatic aldehydes in good yields. Pd(II)porphyrins displayed decent phosphorescence at a670 nm and were able to generate singlet oxygen upon light irradiation. The calculated singlet oxygen quantum yields for Pd(II)porphyrins were between 57% and 73%. The photo-catalytic application of Pd(II)porphyrins for aerobic oxidation of aromatic aldehydes is demonstrated.
Hydrolysis of amides to carboxylic acids catalyzed by Nb2O5
Siddiki,Rashed, Md. Nurnobi,Touchy, Abeda Sultana,Jamil, Md. A. R.,Jing, Yuan,Toyao, Takashi,Maeno, Zen,Shimizu, Ken-Ichi
, p. 1949 - 1960 (2021/03/26)
Hydrolysis of amides to carboxylic acids is an industrially important reaction but is challenging due to the difficulty of cleaving the resonance stabilized amidic C-N bond. Twenty-three heterogeneous and homogenous catalysts were examined in the hydrolysis of acetamide. Results showed that Nb2O5was the most effective heterogeneous catalyst with the greatest yield of acetic acid. A series of Nb2O5catalysts calcined at various temperatures were characterized and tested in the hydrolysis of acetamide to determine the effects of crystal phase and surface properties of Nb2O5on catalytic performance. The high catalytic performance observed was attributed mainly to the facile activation of the carbonyl bond by Lewis acid sites that function even in the presence of basic inhibitors (NH3and H2O). The catalytic studies showed the synthetic advantages of the present method, such as simple operation, catalyst recyclability, additive free, solvent free, and wide substrate scope (>40 examples; up to 95% isolated yield).
Photo-induced deep aerobic oxidation of alkyl aromatics
Wang, Chang-Cheng,Zhang, Guo-Xiang,Zuo, Zhi-Wei,Zeng, Rong,Zhai, Dan-Dan,Liu, Feng,Shi, Zhang-Jie
, p. 1487 - 1492 (2021/07/10)
Oxidation is a major chemical process to produce oxygenated chemicals in both nature and the chemical industry. Presently, the industrial manufacture of benzoic acids and benzene polycarboxylic acids (BPCAs) is mainly based on the deep oxidation of polyalkyl benzene, which is somewhat suffering from environmental and economical disadvantage due to the formation of ozone-depleting MeBr and corrosion hazards of production equipment. In this report, photo-induced deep aerobic oxidation of (poly)alkyl benzene to benzene (poly)carboxylic acids was developed. CeCl3 was proved to be an efficient HAT (hydrogen atom transfer) catalyst in the presence of alcohol as both hydrogen and electron shuttle. Dioxygen (O2) was found as a sole terminal oxidant. In most cases, pure products were easily isolated by simple filtration, implying large-scale implementation advantages. The reaction provides an ideal protocol to produce valuable fine chemicals from naturally abundant petroleum feedstocks. [Figure not available: see fulltext.].
Photoinduced FeCl3-Catalyzed Alkyl Aromatics Oxidation toward Degradation of Polystyrene at Room Temperature?
Zhang, Guoxiang,Zhang, Zongnan,Zeng, Rong
supporting information, p. 3225 - 3230 (2021/09/28)
While polystyrene is widely used in daily life as a synthetic plastic, the subsequently selective degradation is still very challenging and highly required. Herein, we disclose a highly practical and selective reaction for the catalytically efficient oxidation of alkyl aromatics (including 1°, 2°, and 3° alkyl aromatics) to carboxylic acids. While dioxygen was used as the sole terminal oxidant, this protocol was catalyzed by the inexpensive and readily available ferric compound (FeCl3) with irradiation of visible light (blue LEDs) under only 1 atmosphere of O2 at room temperature. This system could further facilitate the selective degradation of polystyrene to benzoic acid, providing an important and practical tool to generate high-value chemical from abundant polystyrene wastes.
Selective oxidation of alkenes to carbonyls under mild conditions
Huo, Jie,Xiong, Daokai,Xu, Jun,Yue, Xiaoguang,Zhang, Pengfei,Zhang, Yilan
supporting information, p. 5549 - 5555 (2021/08/16)
Herein, a practical and sustainable method for the synthesis of aldehydes, ketones, and carboxylic acids from an inexpensive olefinic feedstock is described. This transformation features very sustainable and mild conditions and utilizes commercially available and inexpensive tetrahydrofuran as the additive, molecular oxygen as the sole oxidant and water as the solvent. A wide range of substituted alkenes were found to be compatible, providing the corresponding carbonyl compounds in moderate-to-good yields. The control experiments demonstrated that a radical mechanism is responsible for the oxidation reaction.
Oxidative α-C-C Bond Cleavage of 2° and 3° Alcohols to Aromatic Acids with O2at Room Temperature via Iron Photocatalysis
Zhang, Zongnan,Zhang, Guoxiang,Xiong, Ni,Xue, Ting,Zhang, Junjie,Bai, Lu,Guo, Qinyue,Zeng, Rong
supporting information, p. 2915 - 2920 (2021/05/05)
The selective α-C-C bond cleavage of unfunctionalized secondary (2°) and tertiary alcohols (3°) is essential for valorization of macromolecules and biopolymers. We developed a blue-light-driven iron catalysis for aerobic oxidation of 2° and 3° alcohols to acids via α-C-C bond cleavages at room temperature. The first example of oxygenation of the simple tertiary alcohols was reported. The iron catalyst and blue light play critical roles to enable the formation of highly reactive O radicals from alcohols and the consequent two α-C-C bond cleavages.
Preparation method of bimetallic catalyst oxidation aldehyde synthetic carboxylic acid (by machine translation)
-
Paragraph 0028-0029, (2020/05/30)
The method is, in a reaction solvent: under normal pressure oxygen condition, under the action of a bimetallic catalyst under the action of a bimetallic catalyst under the action of a bimetallic catalyst under the action of a bimetallic catalyst, at, DEG, under stirring . under a stirring condition with an aldehyde compound as a substrate 10-90 °C in a reaction solvent under, a stirring condition under the action of a bimetallic catalyst . The reaction solution is stirred, for. 1-12h, hours at; room temperature, under, the action, of a bimetallic 1:1 catalyst Cu(OAc) under the action of a bimetallic catalyst under the action of a bimetallic catalyst under the action of a double-metal catalyst. 2 · H2 O And Co(OAc)2 · 44H2 O As the bimetallic catalyst, can achieve the highest yield of the carboxylic acid product, in high yield, by adjusting the reaction temperature, solvent, catalyst amount, for different types of the raw material aldehyde 98%. (by machine translation)
Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C-H bonds
Fu, Hua,Liu, Can,Liu, Yong,Yang, Haijun,Zhu, Xianjin
supporting information, p. 4357 - 4363 (2020/07/14)
Visible light-induced organic reactions are important chemical transformations in organic chemistry, and their efficiency highly depends on suitable photocatalysts. However, the commonly used photocatalysts are precious transition-metal complexes and elaborate organic dyes, which hamper large-scale production due to high cost. Here, for the first time, we report a novel strategy: light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C-H bonds, allowing high-value-added aromatic ketones and carboxylic acids to be easily prepared in high-to-excellent yields using readily available alkyl arenes, methyl arenes and aldehydes as materials. The mechanistic investigations showed that the treatment of inexpensive and readily available sodium trifluoromethanesulfinate with oxygen under irradiation of light could in situ form a pentacoordinate sulfide intermediate as an efficient photosensitizer. The method represents a highly efficient, economical and environmentally friendly strategy, and the light and oxygen-enabled sodium trifluoromethanesulfinate photocatalytic system represents a breakthrough in photochemistry. This journal is