87-62-7Relevant articles and documents
Substitution of OH with NH2 in calix[4]arenes: An approach to the synthesis of aminocalixarenes
Ohseto,Murakami,Araki,Shinkai
, p. 1217 - 1220 (1992)
From p-t-butylcalix[4]arene bis(diethylphosphate) ester (1), monodehydroxymonoamino-p-t-butylcalix[4]arene (3) and diamino-p-t-butyl-calix[4]arene (4) were synthesized in liquid ammonia-co-solvent in the presence of KNH2. This is the first successful example for the substitution of the OH group with the NH2 group.
Minimization of Back-Electron Transfer Enables the Elusive sp3 C?H Functionalization of Secondary Anilines
Zhao, Huaibo,Leonori, Daniele
supporting information, p. 7669 - 7674 (2021/03/08)
Anilines are some of the most used class of substrates for application in photoinduced electron transfer. N,N-Dialkyl-derivatives enable radical generation α to the N-atom by oxidation followed by deprotonation. This approach is however elusive to monosubstituted anilines owing to fast back-electron transfer (BET). Here we demonstrate that BET can be minimised by using photoredox catalysis in the presence of an exogenous alkylamine. This approach synergistically aids aniline SET oxidation and then accelerates the following deprotonation. In this way, the generation of α-anilinoalkyl radicals is now possible and these species can be used in a general sense to achieve divergent sp3 C?H functionalization.
Rhodium-terpyridine Catalyzed Transfer Hydrogenation of Aromatic Nitro Compounds in Water
Liu, Yuxuan,Miao, Wang,Tang, Weijun,Xue, Dong,Xiao, Jianliang,Wang, Chao,Li, Changzhi
supporting information, p. 1725 - 1729 (2021/06/01)
A rhodium terpyridine complex catalyzed transfer hydrogenation of nitroarenes to anilines with i-PrOH as hydrogen source and water as solvent has been developed. The catalytic system can work at a substrate/catalyst (S/C) ratio of 2000, with a turnover frequency (TOF) up to 3360 h?1, which represents one of the most active catalytic transfer hydrogenation systems for nitroarene reduction. The catalytic system is operationally simple and the protocol could be scaled up to 20 gram scale. The water-soluble catalyst bearing a carboxyl group could be recycled 15 times without significant loss of activity.
Chemoselective Hydrogenation of Nitroarenes Using an Air-Stable Base-Metal Catalyst
Zubar, Viktoriia,Dewanji, Abhishek,Rueping, Magnus
supporting information, p. 2742 - 2747 (2021/05/05)
The reduction of nitroarenes to anilines as well as azobenzenes to hydrazobenzenes using a single base-metal catalyst is reported. The hydrogenation reactions are performed with an air-and moisture-stable manganese catalyst and proceed under relatively mild reaction conditions. The transformation tolerates a broad range of functional groups, affording aniline derivatives and hydrazobenzenes in high yields. Mechanistic studies suggest that the reaction proceeds via a bifunctional activation involving metal-ligand cooperative catalysis.
Hydroboration reduction reaction of aromatic nitro compounds without transition metal catalysis
-
Paragraph 0006; 0057-0060, (2021/07/31)
The invention relates to a hydroboration reduction reaction of aromatic nitro compounds without transition metal catalysis. According to the method, triethyl boron and potassium tert-butoxide are used as catalysts for the first time, and an aromatic nitro compound and pinacol borane which is low in price and easy to obtain can be conveniently catalyzed to be subjected to a hydroboration reduction reaction under mild conditions to prepare aromatic amine products. Compared with a traditional method, the method generally has the advantages that the catalyst is cheap and easy to obtain, operation is convenient, and reaction is safe. The selective hydroboration reduction reaction of the non-transition metal reagent catalyzed aromatic nitro compound and pinacol borane is realized for the first time, and a practical new reaction strategy is provided for laboratory preparation or industrial production of aromatic amine products.
Pd nanoparticles/graphene quantum dot supported on chitosan as a new catalyst for the reduction of nitroarenes to arylamines
Kalanpour, Nastaran,Nejati, Saeid,Keshipour, Sajjad
, p. 1243 - 1250 (2020/10/29)
A new heterogeneous catalyst was obtained by growing graphene quantum dots on chitosan and subsequent immobilization of Pd nanoparticles. The catalyst after characterization was used in the reduction of nitroarenes to the corresponding amines by NaBH4 as a weak reducing agent of nitro compounds. The catalyst exhibited excellent catalytic activity and selectivity under mild reaction conditions in water as a green solvent during 1?h. Additionally, the catalyst can be reused for five consecutive runs without any significant decrease in its activity and selectivity.
Biogenic Synthesis of Gold Nanoparticles on a Green Support as a Reusable Catalyst for the Hydrogenation of Nitroarene and Quinoline
Adeyeye Nafiu, Sodiq,Aziz, Abdul,Shaheen Shah, Syed,Shaikh, M. Nasiruzzaman
, p. 1956 - 1966 (2021/06/18)
Direct attachment of gold nanoparticles to a green support without the use of an external reducing agent and using it for removing toxic pollutants from wastewater, i. e., reduction of nitroarene to amine, are described. A novel approach involving the reduction of gold by the jute plant (Corchorus genus) stem-based (JPS) support itself to form nanoparticles (AuNPs) to be used as a catalytic system (‘dip-catalyst’) and its catalytic activity for the hydrogenation of series of nitroarenes in aqueous media are presented. AuNPs/JPS catalyst was characterized using SEM, UV-Vis, FTIR, TEM, XPS, and ICP-OES. Confined area elemental mapping exhibits uniform and homogeneous distribution of AuNPs on the support surface. TEM shows multi-faceted AuNPs in the range of 20–30 nm. The reactivity of AuNPs/JPS for the transfer hydrogenation of nitroarene as well as hydrogenation of quinoline under molecular H2 pressure was evaluated. Sodium borohydride, when used as the hydrogen source, demonstrates a high catalytic efficiency in the transfer hydrogenation reduction of 4-nitrophenol (4-NP). Quinoline is quantitatively and chemoselectively hydrogenated to 1,2,3,4-tetrahydroquinoline (py-THQ) using molecular hydrogen. Reusability studies show that AuNPs are stable on the support surface and their selectivity is not affected.
Sustainable and recyclable palladium nanoparticles–catalyzed reduction of nitroaromatics in water/glycerol at room temperature
Chen, Jin,Dai, Bencai,Liu, Changchun,Shen, Zhihao,Zhao, Yongde,Zhou, Yang
, p. 540 - 544 (2020/07/14)
Palladium nanoparticles with unique catalytic activity and high stability are synthesized. These nanoparticles exhibit excellent catalytic reduction activity for nitroaromatics in green solvents in the presence of H2 at ambient pressure and temperature. The prominent advantages of this nanotechnology include low consumption of catalyst, excellent chemoselectivity, high reusability of the catalyst, and environmentally green solvents.
Single-atom Fe-N4site for the hydrogenation of nitrobenzene: theoretical and experimental studies
Dong, Panpan,He, Rong,Liu, Yan,Lu, Ning,Mao, Junjie,Wu, Konglin,Zhang, Wenzhuang,Zheng, Yamin
supporting information, p. 7995 - 8001 (2021/06/21)
The hydrogenation of nitrobenzene to aniline is an important process in the industry of fine chemicals, but developing inexpensive catalysts with expected activity and selectivity still remains a challenge. By using density functional theory calculations, we demonstrated that the isolated Fe atom not only can weaken the adsorption of reactants and reaction intermediates as compared to Fe nanoparticles, but also remarkably decrease the reaction barrier for the hydrogenation of nitrobenzene to aniline. Thus, the Fe single-atom (Fe SA) catalyst is considered as an ideal catalyst for this reaction. This theoretical prediction has been subsequently confirmed by experimental results obtained for the Fe SAs loaded on N-doped hollow carbon spheres (Fe SAs/NHCSs) which achieved a conversion of 99% with a selectivity of 99% for the hydrogenation of nitrobenzene. The results significantly outperformed the Fe nanoparticles for this reaction. This work provides theoretical insight for the rational design of new catalytic systems with excellent catalytic properties.
Efficient hydrogenation catalyst designing via preferential adsorption sites construction towards active copper
Dai, Xingchao,He, Dongcheng,Li, Teng,Shi, Feng,Wang, Hongli,Wang, Tao,Wang, Xinzhi
, p. 397 - 406 (2021/07/21)
Based on the experimental and DFT calculation results, here for the first time we built preferential adsorption sites for nitroarenes by modification of the supported Cu catalysts surface with 1,10-phenathroline (1,10-phen), by which the yield of aniline via reduction of nitroarene is enhanced three times. Moreover, a macromolecular layer was in-situ generated on supported Cu catalysts to form a stable macromolecule modified supported Cu catalyst, i.e., CuAlOx-M. By applying the CuAlOx-M, a wide variety of nitroarene substrates react smoothly to afford the desired products in up to > 99% yield with > 99% selectivity. The method tolerates a variety of functional groups, including halides, ketone, amide, and C = C bond moieties. The excellent catalytic performance of the CuAlOx-M can be attributed to that the 1,10-phen modification benefits the preferential adsorption of nitrobenzene and slightly weakens adsorption of aniline on the supported nano-Cu surface.