10.1002/chem.201804497
Chemistry - A European Journal
COMMUNICATION
[1]
[2]
T. P. Yoon, E. N. Jacobsen, Science 2003, 299, 1691–1693.
yield as a mixture of regio- and diastereomers. After the
rearrangement to the free chiral C2-symmetric ligand, the
conversion into the desired complex was achieved by
deprotonation with NaHMDS and reaction with TiCl3•3THF. A
comparison with the literature NMR data revealed that the
desired stereoisomer (S,S,R,R)-20 was indeed formed as major
product together with the pseudo-enantiomeric complex
(R,R,R,R)-25 and the pseudo-meso complex (R,S,R,R)-26
(20:25:26 = 3.6:1:2.8). Chromatography using silanized silica gel
allowed the separation of 26 (5% yield) from 20 and 25, which
were isolated as a 3.7:1 mixture in 28% yield. A further
separation of 20 from 25 was not undertaken, since it had
previously been described.[6b] Although the formation of 25 was
not completely suppressed, this synthesis of 20 served as a
proof of principle for two reasons: 1) The desired stereoisomer
was formed as major product in the complex formation, and 2) a
moderate central-to-planar chirality transfer was observed.
a) F. R. W. P. Wild, L. Zsolnai, G. Huttner, H. H. Brintzinger, J.
Organomet. Chem. 1982, 232, 233–247; b) F. R. W. P. Wild, M.
Wasiucionek, G. Huttner, H. H. Brintzinger, J. Organomet. Chem. 1985,
288, 63–67; c) S. Collins, B. A. Kuntz, N. J. Taylor, D. G. Ward, J.
Organomet. Chem. 1988, 342, 21–29.
[3]
[4]
a) H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. M.
Waymouth, Angew. Chem. Int. Ed. Engl. 1995, 34, 1143–1170; Angew.
Chem. 1995, 107, 1255–1283; b) A. H. Hoveyda, J. P. Morken, Angew.
Chem. Int. Ed. 1996, 35, 1262–1284; Angew. Chem. 1996, 108, 1378–
1401.
a) J. Streuff, M. Feurer, P. Bichovski, G. Frey, U. Gellrich, Angew.
Chem. Int. Ed. 2012, 51, 8661–8664; Angew. Chem. 2012, 124, 8789–
8792. See also: b) J. Streuff, M. Feurer, G. Frey, A. Steffani, S.
Kacprzak, J. Weweler, L. H. Leijendekker, D. Kratzert, D. A. Plattner, J.
Am. Chem. Soc. 2015, 137, 14396–14405; c) J. Streuff, Synthesis 2013,
45, 281–307.
[5]
[6]
a) R. L. Halterman, Chem. Rev. 1992, 92, 965–994; b) P. J. Shapiro,
Coord. Chem. Rev. 2002, 231, 67–81; c) Y. Qian, J. Huang, M. D. Bala,
B. Lian, H. Zhang, H. Zhang, Chem. Rev. 2003, 103, 2633–2690.
a) J. A. Bandy, M. L. H. Green, I. M. Gardiner, K. Prout, J. Chem. Soc.,
Dalton Trans. 1991, 2207–2216; b) A. L. Rheingold, N. P. Robinson, J.
Whelan, B. Bosnich, Organometallics 1992, 11, 1869–1876; c) M. E.
Huttenloch, J. Diebold, U. Rief, H. H. Brintzinger, A. M. Gilbert, T. J.
Katz, Organometallics 1992, 11, 3600–3607; d) S. C. Sutton, M. H.
Nantz, S. R. Parkin, Organometallics 1993, 12, 2248–2257; e) R. L.
Halterman, T. M. Ramsey, N. A. Pailes, M. A. Khan, J. Organomet.
Chem. 1995, 497, 43–53; f) B. Chin, S. L. Buchwald, J. Org. Chem.
1996, 61, 5650–5651; g) G. M. Diamond, R. F. Jordan, J. L. Petersen, J.
Am. Chem. Soc. 1996, 118, 8024–8033; h) D. F. Taber, B. Balijepalli,
K.-K. Liu, S. Kong, A. L. Rheingold, F. R. Askham, J. Org. Chem. 1999,
64, 4525–4527; i) M. Ringwald, R. Stürmer, H.-H. Brintzinger, J. Am.
Chem. Soc. 1999, 121, 1524–1527; j) H.-R. H. Damrau, E. Royo, S.
Obert, F. Schaper, A. Weeber, H. H. Brintzinger, Organometallics 2001,
20, 5258–5265; k) M. D. LoCoco, X. Zhang, R. F. Jordan, J. Am. Chem.
Soc. 2004, 126, 15231–15244; l) L. Xu, K. Mikami, Tetrahedron Lett.
2004, 45, 9215–9217.
MgBr•LiCl
O
Me
O
Me Me
N
4
MeO
N
OMe
Et2O, 23 ºC
60%
Me
O
Me Me
21
O
22, >99.9% ee
Br
Br
CHBr3, KOH
BnMe3NCl
(10 mol%)
CH2I2
Zn, TiCl4
cat. PbCl2
Br
Br
Me
48–52%
76%
Me
23
Me
Me
24 (+ isomers)
1.
2.
MeLi
NaHMDS
TiCl3•3THF
Me
Me
Me
Me
Me
Cl
Cl
Cl
Cl
Cl
Cl
Ti
+
+
Ti
Ti
–40 ºC to reflux
then 12N HCl, air
Me
crude:
3.6:1:2.8 d.r.
(S,S,R,R)-20
(R,R,R,R)-25
(R,S,R,R)-26
[7]
a) L. Skattebøl, Tetrahedron 1967, 23, 1107–1117. See also: b) B.
Dorer, M.-H. Prosenc, U. Rief, H. H. Brintzinger, Organometallics 1994,
13, 3868–3872; c) R. B. Grossman, J.-C. Tsai, W. M. Davis, A.
Gutiérrez, S. L. Buchwald, Organometallics 1994, 13, 3892–3896.
G. M. Diamond, S. Rodewald, R. F. Jordan, Organometallics 1995, 14,
5–7.
pseudo-enantiomers
28% (20+25)
pseudo-meso
5%
(3.7:1 d.r.)
[8]
[9]
Scheme 6. Synthesis of titanocene 20 from an enantiopure ansa-ligand.
W. Röll, L. Zsolnai, G. Huttner, H. H. Brintzinger, J. Organomet. Chem.
1987, 322, 65–70.
In summary,
a broadly applicable synthesis of chiral
[10] A compilation of the previous results for the synthesis of 1, 2, 14, 19,
and 20 can be found in the Supporting Information.
annulated ansa-metallocenes has been developed. It allows the
rapid assembly of customized complexes with good rac-
selectivity from alkenyl Grignard reagents and bis-Weinreb
amides. This has been demonstrated by installing structural
modifications at the ebthi-framework and the bridge, as well as
the introduction of Ti, Zr, and Hf as core metals. Furthermore, a
unique helical ansa-metallocene has been prepared that may
find application in future stereoselective catalyses.
[11] For precedence of an initiation by Br-Mg exchange, see: M. S. Baird, A.
V. Nizovtsev, I. G. Bolesov, Tetrahedron 2002, 58, 1581–1593.
[12] For the preparation of silanized silica gel, see the Supporting
Information.
[13] CCDC entries 1578500 (12), 1578518 (13) and 1848143 (18) contain
the supplementary crystallographic data for this paper. These data can
be obtained from The Cambridge Crystallographic Data Centre.
[14] N. Saleh, C. Shen, J. Crassous, Chem. Sci. 2014, 5, 3680–3694.
[15] The two enantiomers of the unit cell showed
a slightly different
conformation, probably due to crystal packing effects.
[16] a) J. A. Ewen, L. Haspeslagh, J. L. Atwood, H. Zhang, J. Am. Chem.
Soc. 1987, 109, 6544–6545; b) CCDC number 1160511.
[17] For an example featuring a bulky, conformationally fixed ligand, see: Z.
Chen, R. L. Halterman, J. Am. Chem. Soc. 1992, 114, 2276–2277.
[18] Both enantiomers are commercially available. We prepared (R,R)-21
following a literature procedure: C.-D. Lu, A. Zakarian, Org. Synth.
2008, 85, 158–171.
Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG) – projects 333382543 and 408295365.
Keywords: helical structures • ligand design • metallocenes •
[19] K. Takai, T. Kakiuchi, Y. Kataoka, K. Utimoto, J. Org. Chem. 1994, 59,
2668–2670.
rearrangement • titanium
4
This article is protected by copyright. All rights reserved.