6392
D. K. Mycock et al. / Tetrahedron Letters 49 (2008) 6390–6392
Table 2
In conclusion, we have shown that DMDO can be used to effect
DMDO-mediated oxidation of 1,3-dioxanesa
an oxidative partial deprotection of benzylidene acetals derived
from both 1,2- and 1,3-diols.21 A wide range of functional groups
are tolerated, and good to excellent yields are usually observed.
The reactions are easy to perform and produce little waste other
than acetone, and as a consequence this method could find use
in a number of synthetic applications.
Entry
Acetal
Products
Yieldb
(%)
(ratio 2:3)
OH
OH
OH
OBz
OH
OH
O
O
1
90
O
O
N
H
2a
N
H
O
N
H
1a
OBz
O
Ph
Ph
Acknowledgements
3a
(100 : 0)
We thank Matthew D. Selby (Pfizer) for his interest in this work,
and the EPSRC (DTA studentship to DM) and Pfizer for providing
financial support.
OBz
OH
O
O
N
H
2k
N
H
2
3
52
60
OH
OBz
O
O
N
H
1k
References and notes
3k
O
1. Kocienski, P. J. Protecting Groups; Thieme: Stuttgart, New York, 1994; pp 96–
102.
2. (a) Eliel, E. L.; Badding, V. G.; Rerick, M. N. J. Am. Chem. Soc. 1962, 84, 2371; (b)
Eliel, E. L.; Pilato, L. A.; Badding, V. G. J. Am. Chem. Soc. 1962, 84, 2377.
3. Adam, G.; Seebach, D. Synthesis 1988, 373.
(100 : 0)
O
HO
OBz
OBz OH
3l
4. Johnsson, R.; Olsson, D.; Ellervik, U. J. Org. Chem. 2008, 73, 5226 and references
cited therein.
2l
Ph
5. Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983, 1593.
6. (a) Hanessian, S.; Plessas, N. R. J. Org. Chem. 1969, 34, 1035; (b) Hanessian, S.;
Plessas, N. R. J. Org. Chem. 1969, 34, 1045; (c) Hanessian, S.; Plessas, N. R. J. Org.
Chem. 1969, 34, 1053; (d) Hullar, T. L.; Siskin, S. B. J. Org. Chem. 1970, 35, 225;
(e) Binkley, R. W.; Goewey, G. S.; Johnston, J. C. J. Org. Chem. 1984, 49, 992.
7. (a) Deslongchamps, P.; Moreau, C.; Frehel, D.; Chenevert, R. Can. J. Chem. 1975,
53, 1204; (b) Deslongchamps, P.; Moreau, C. Can. J. Chem. 1971, 49, 2465 and
references cited therein.
1l
(20 : 80)
NHCbz
NHCBz
4
5
74
70
O
O
O
BzO
BzO
OH
8. Hosokawa, T.; Imada, Y.; Murahashi, S. I. J. Chem. Soc., Chem. Commun. 1983,
1245.
2m
OAc
1m
Ph
9. Sueda, T.; Fukuda, S.; Ochiai, M. Org. Lett. 2001, 3, 2387.
10. Huang, N. J.; Xu, L. H. Synth. Commun. 1990, 20, 1563.
11. Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O. Synlett 1999, 777.
12. (a) Chidambaram, N.; Bhat, S.; Chandrasekaran, S. J. Org. Chem. 1992, 57, 5013;
(b) Luzzio, F. A.; Bobb, R. A. Tetrahedron Lett. 1997, 38, 1733.
13. Adinolfi, M.; Barone, G.; Guariniello, L.; Iadonisi, A. Tetrahedron Lett. 1999, 40,
8439.
14. (a) Chen, Y. S.; Wang, P. G. Tetrahedron Lett. 2001, 42, 4955; (b) Karimi, B.;
Rajabi, J. Synthesis 2003, 2373.
15. (a) Hayes, C. J.; Sherlock, A. E.; Green, M. P.; Wilson, C.; Blake, A. J.; Selby, M. D.;
Prodger, J. C. J. Org. Chem. 2008, 73, 2041; (b) Hayes, C. J.; Sherlock, A. E.; Selby,
M. D. Org. Biomol. Chem. 2006, 4, 193.
16. For related acetal oxidations with DMDO see: (a) Akbalina, Z. F.;
Abushakhmina, G. M.; Kabal’nova, N. N.; Zlotskii, S. S.; Shereshovets, V. V.
Russ. J. Gen. Chem. 2002, 72, 1406; (b) Akbalina, Z. F.; Zlotskii, S. S.; Kabal’nova,
N. N.; Grigor’ev, I. A.; Kotlyar, S. A.; Shereshovets, V. V. Russ. J. Appl. Chem. 2002,
75, 1120.
OAc
O
OH
Ph
1n
2n
OTBS
OTBS
O
O
6
93
BzO
OH
Ph
2o
1o
a
Conditions: DMDO (0.1 M, 1 equiv), acetone, 0 °C.
Combined isolated yield.
17. Brasili, L.; Sorbi, C.; Franchini, S.; Manicardi, M.; Angeli, P.; Marucci, G.;
Leonardi, A.; Poggesi, E. J. Med. Chem. 2003, 46, 1504.
b
18. (a) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847; (b) Adam, W.;
Curci, R.; Edwards, J. O. Acc. Chem. Res. 1989, 22, 205 and references cited
therein.
19. (a) Murray, R. W.; Jeyaraman, R.; Mohan, L. J. Am. Chem. Soc. 1986, 108, 2470;
(b) Curci, R.; Daccolti, L.; Fiorentino, M.; Fusco, C.; Adam, W.; Gonzaleznunez,
M. E.; Mello, R. Tetrahedron Lett. 1992, 33, 4225.
20. This mechanism is invoked for the NBS-mediated cleavage of benzylidene
acetals (see Ref. 6).
oxocarbenium ion 7f was involved in producing 3f, we would
expect to see either inversion of stereochemistry resulting from
SN2 attack of water (Scheme 3), or loss of stereochemistry via an
equivalent SN1 pathway (not shown).
21. Typical procedure: Benzylidene acetal 1c (82.4 mg, 0.40 mmol) was treated
with a solution of DMDO (4 mL of a 0.10 M solution in acetone, 1 equiv) and
the mixture was stirred at 0 °C for 20 h. The solution was allowed to reach
room temperature and was then concentrated in vacuo. The crude material
was purified by column chromatography using petroleum ether 40–60 and
EtOAc (3:1) to give benzoates 2c and 3c as a 90:10 mixture (75 mg, 85%). (Data
In addition to the oxidation of 1,3-dioxolanes, we also per-
formed a series of experiments using 1,3-dioxanes as substrates
(Table 2). As observed previously in the dioxolane series, oxidation
of the alkyl-substituted acetals 1a and 1k afforded the secondary
benzoates 2a and 2k as the major products. Both examples also
show that the oxidation can be performed in the presence of
hydroxyls, electron-deficient alkenes and amide NH groups. Acetal
1l gave a reversal of regioselection and afforded the primary ben-
zoate 3l as the major product. This is a similar behaviour to that
seen with 1e (Table 1) in the dioxolane series, and its formation
can be rationalised in a similar way (i.e., the tertiary ester 2l is ste-
rically hindered). The acetals 1m–o demonstrate good functional
group compatibility with the oxidation conditions, with acetate
1n, OTBS 1o and NHCBz 1m groups being well tolerated.
for 2c): m
max/cmÀ1 (CHCl3) 2972, 1710, 1279, 911; dH (400 MHz; CDCl3) 8.10–
8.07 (2H, m, ArH), 7.61–7.57 (1H, m, ArH), 7.49–7.45 (2H, m, ArH), 4.96 (1H, dd,
J 7.9 and 2.5, CHOBz), 3.98 (1H, dd, J 12.2 and 2.5, HOCHH), 3.78 (1H, dd, J 12.2
and 8.8, HOCHH), 1.05 (9H, s, C(CH3)3); dC (100 MHz; CDCl3) 167.5 (C), 133.1
(CH), 130.2 (C), 129.7 (CH), 128.5 (CH), 83.6 (CH), 62.9 (CH2), 34.0 (C) 26.3
(CH3); m/z (ESI+) (M+Na, C13H18NaO3 requires 245.1148. Found 245.1143).
(Data for 3c): m
max/cmÀ1 (CHCl3) 3012, 2965, 1718, 1276, 909; dH (270 MHz;
CDCl3) 8.09–8.03 (2H, m, ArH), 7.60–7.55 (1H, m, ArH), 7.50–7.45 (2H, m, ArH),
4.55 (1H, dd, J 11.3 and 2.4, CHHOBz), 4.25 (1H, dd, J 11.3 and 8.6, CHHOBz),
3.66 (1H, dd, J 8.9 and 2.4, HOCH), 1.03 (9H, s, C(CH3)3); dC (100 MHz; CDCl3)
167.0 (C), 133.2 (CH), 130.0 (C), 129.7 (CH), 128.5 (CH), 77.5 (CH), 67.1 (CH2),
34.1 (C) 25.9 (CH3); m/z (ESI+) (M+Na, C13H18NaO3 requires 245.1148. Found
245.1142).