SCHEME 1. Synthesis of Oxazoles from Propargylic
Alcohols and Amides
Brønsted Acid-Catalyzed Propargylation/
Cycloisomerization Tandem Reaction: One-Pot
Synthesis of Substituted Oxazoles from
Propargylic Alcohols and Amides
Ying-ming Pan, Fei-jian Zheng, Hai-xin Lin, and
Zhuang-ping Zhan*
Department of Chemistry, College of Chemistry and
Chemical Engineering, and State Key Laboratory for
Physical Chemistry of Solid Surfaces, Xiamen UniVersity,
Xiamen 361005, People’s Republic of China
ReceiVed December 18, 2008
However, the one-pot synthesis of substituted oxazoles directly
from simple and readily available substrates is much less studied.
Recently, efficient propargylation/cycloisomerization sequential
reactions of propargylic alcohols with amides in the presence
of [Cp*RuCl(µ2-SMe)2RuCp*Cl]/AuCl3/NH4BF47 or Zn(OTf)2/
TpRuPPh3(CH3CN)2PF6,8 which led to the synthesis of substi-
tuted oxazoles, have been reported. Nevertheless, the previous
reports only exemplify terminal propargylic alcohols, and at least
two different catalysts are needed. To the best of our knowledge,
there is no propargylation/cycloisomerization tandem reaction
for the synthesis of substituted oxazoles in the presence of a
single catalyst reported in the literature. Herein, we describe a
one-pot PTSA-catalyzed propargylation/cycloisomerization tan-
dem reaction. The process is outlined in Scheme 1. PTSA acts
as a bifunctional catalyst and effectively catalyzes two reaction
processes in a single reaction vessel under the same conditions.
The reaction is completed rapidly under mild conditions and is
An efficient one-pot propargylation/cycloisomerization tan-
dem process has been developed for the synthesis of
substituted oxazole derivatives from propargylic alcohols and
amides with use of p-toluenesulfonic acid monohydrate
(PTSA) as a bifunctional catalyst. This method provides a
rapid and efficient access to substituted oxazoles.
Nucleophilic substitution and cyclization are two major
reactions of organic chemistry.1,2 More powerful and useful
transformations are possible when these two classes of reactions
are combined in a one-pot procedure. Propargylic substitution
and subsequent cycloisomerization recently developed in our
group are good examples of such transformations.3
To further extend the scope of the Lewis acid-catalyzed
propargylation/cycloisomerization tandem reaction, we sought
to explore the coupling of propargylic alcohols with amides and
the subsequent cycloisomerization for the synthesis of substi-
tuted oxazoles. In general, substituted oxazoles are accessed via
ring derivatization or cyclization of acyclic precursors.4-6
Among the variety of compounds that can be subjected to
cyclization, unsaturated amides are substrates of major interest.6
(5) For selected examples, see: (a) Elders, N.; Ruijter, E.; de Kanter, F. J. J.;
Groen, M. B.; Orru, R. V. A. Chem. Eur. J. 2008, 14, 4961. (b) Chudasama, V.;
Wilden, J. D. Chem. Commun. 2008, 3768. (c) Kawano, Y.; Togo, H. Synlett
2008, 217. (d) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J.-P. Eur. J. Org.
Chem. 2007, 4076. (e) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J.-P. Org.
Lett. 2007, 9, 3615. (f) Herrera, A.; Mart´ınez-Alvarez, R.; Ramiro, P.; Molero,
D.; Almy, J. J. Org. Chem. 2006, 71, 3026. (g) Wipf, P.; Fletcher, J. M.; Scarone,
L. Tetrahedron Lett. 2005, 46, 5463. (h) Lee, J. C.; Choi, H. J.; Lee, Y. C.
Tetrahedron Lett. 2003, 44, 123. (i) Addie, M. S.; Taylor, R. J. K. J. Chem.
Soc., Perkin Trans. 1 2000, 527. (j) Wipf, P.; Miller, C. P. J. Org. Chem. 1993,
58, 3604. (k) Doyle, M. P.; Buhro, W. E.; Davidson, J. G.; Elliott, R. C.; Hoekstra,
J. W.; Oppenhuizen, M. J. Org. Chem. 1980, 45, 3657. (l) Wasserman, H. H.;
Vinick, F. J. J. Org. Chem. 1973, 38, 2407.
(6) For selected examples, see: (a) Beccalli, E. M.; Borsini, E.; Broggini,
G.; Palmisano, G.; Sottocornola, S. J. Org. Chem. 2008, 73, 4746. (b) Mart´ın,
R.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 5521. (c) Schuh, K.; Glorius,
F. Synthesis 2007, 2297. (d) Merkul, E.; Mu¨ller, T. J. J. Chem. Commun. 2006,
4817. (e) Black, D. A.; Arndtsen, B. A. Tetrahedron 2005, 61, 11317. (f) Hashmi,
A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391. (g)
Wipf, P.; Aoyama, Y.; Benedum, T. E. Org. Lett. 2004, 6, 3593. (h) Arcadi, A.;
Cacchi, S.; Cascia, L.; Fabrizi, G.; Marinelli, F. Org. Lett. 2001, 3, 2501. (i)
Wipf, P.; Rahman, L. T.; Rector, S. R. J. Org. Chem. 1998, 63, 7132.
(7) Milton, M. D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. Chem. Commun.
2004, 2712.
(1) Rossi, R. A.; Pierini, A. B.; Pen˜e´n˜ory, A. B. Chem. ReV 2003, 103, 71,
and references cited therein.
(2) Winnik, M. A. Chem. ReV. 1981, 81, 491, and references cited therein.
(3) (a) Zhan, Z.-P.; Cai, X.-B.; Wang, S.-P.; Yu, J.-L.; Liu, H.-J.; Cui, Y.-
Y. J. Org. Chem. 2007, 72, 9838. (b) Zhan, Z.-P.; Wang, S.-P.; Cai, X.-B.; Liu,
H.-J.; Yu, J.-L.; Cui, Y.-Y. AdV. Synth. Catal. 2007, 349, 2097. (c) Zhan, Z.-P.;
Yu, J.-L.; Liu, H.-J.; Cui, Y.-Y.; Yang, R.-F.; Yang, W.-Z.; Li, J.-P. J. Org.
Chem. 2006, 71, 8298. (d) Zhan, Z.-P.; Yang, W.-Z.; Yang, R.-F.; Yu, J.-L.;
Liu, H.-J. Chem. Commun. 2006, 3352.
(4) For recent reviews, see: (a) Yeh, V. S. C. Tetrahedron 2004, 60, 11995.
(b) Wipf, P. Chem. ReV. 1995, 95, 2115. (c) Palmer; D. C.; Venkatraman, S. In,
The Chemistry of Heterocyclic Compounds,A Series of Monographs, Oxazoles:
Synthesis, Reactions, and Spectroscopy Part A; Palmer, D. C., Ed.; John Wiley
& Sons: Hoboken, NJ, 2003.
(8) The zinc(II)-catalyzed propargylic substitution produces R-carbonyl amide.
Subsequent cycloisomerization of R-carbonyl amide affords the substituted
oxazole.
See: Kumar, M. P.; Liu, R.-S. J. Org. Chem. 2006, 71, 4951.
3148 J. Org. Chem. 2009, 74, 3148–3151
10.1021/jo8027533 CCC: $40.75 2009 American Chemical Society
Published on Web 03/18/2009