rocycles, but our studies have been limited to cycles with
high symmetry.9 We have found it very difficult to prepare
macrocycles with different components. While the advantage
of this self-assembly method lies in the reversibility of the
imine condensation that enables preparation of thermody-
namically stable macrocycles, reducing the symmetry by
incorporating different components generally leads to a
mixture of inseparable products unless metal templation is
utilized.10 Facile routes to triangular macrocycles where one
side is chemically different than the others may open avenues
to making macrocycles that have different functional groups
on the periphery (e.g., hydrophobic on one side, hydrophilic
on the other). Surprisingly, there are few examples of
macrocycles with isosceles triangular shapes. Only recently
has the development of “isosceles macrocycles”, where two
sides are chemically and geometrically distinct from the third,
been met with success in the case of metal-coordination
macrocycles.11
3. Macrocycle 5 was prepared by the condensation of 3 with
substituted o-phenylenediamine 4. The mass spectrum of the
product clearly showed the [5 + H]+ ion at m/z 1581.3 Da.
At first we were surprised by this result. We expected to
obtain a larger macrocycle or even a polymer since the
macrocycle appears highly strained. However, semiempirical
calculations showed that the macrocycle will adopt a cone
shape analogous to that of a calixarene, Figure 1. In
macrocycle 5, the resorcinol moiety can be regarded as the
base of an isosceles triangle, the two catechol parts are sides,
and the three diamine components are vertices. Thus, the
macrocycle has 3 N2O2 pockets, one flanked by two imines
and the other two by one ketimine and one aldimine.
Scheme 1. Synthesis of Macrocycle 5
Figure 1. Semiempirical (PM3) calculated model of macrocycle
5: (a) space-filling model showing the interior cavity; (b, c) views
of the macrocycle in the cone conformation. Alkoxy chains were
not included in the model.
There has been considerable interest in expanding calix-
arene-based molecules with use of naphthalenes in order to
modify binding and other properties.13 Applying a similar
strategy to that employed in the synthesis of 5, we reacted
diamine 6 (prepared from the condensation of 2 equiv of 4
with 3,6-dibenzoylresorcinol) with naphthalenedialdehyde 7
(7) (a) Mastalerz, M. Chem. Commun. 2008, 4756–4758. (b) Liu, X.;
Liu, Y.; Li, G.; Warmuth, R. Angew. Chem., Int. Ed. 2006, 45, 901–904.
(c) Ic¸li, B.; Christinat, N.; To¨nnemann, J.; Schu¨ttler, C.; Scopelliti, R.;
Severin, K. J. Am. Chem. Soc. 2009, 131, 3154–3155. (d) Sanmart´ın, J.;
Bermejo, M. R.; Garc´ıa-Deibe, A. M.; Rivas, I. M.; Ferna´ndez, A. R.
J. Chem. Soc., Dalton Trans. 2000, 4174–4181. (e) Uribe-Romo, F. J.; Hunt,
J. R.; Furukawa, H.; Klo¨ck, C.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem.
Soc. 2009, 131, 4570–4571.
Here we report the preparation of novel covalently linked
molecular isosceles triangles using Schiff base chemistry.
The new macrocycles adopt cone-like conformations in
solution that enable them to bind organic cations in their
interiors to form 1:1 host-guest complexes. Scheme 1 shows
the synthetic route to macrocycle 5 with an isosceles shape.
Compound 1 with two ketimine bonds12 was first reacted
with 1,4-diformylcatechol 2 to give dialdehyde compound
(8) For recent examples, see: (a) Akine, S.; Taniguchi, T.; Nabeshima,
T. Tetrahedron Lett. 2001, 42, 8861–8864. (b) Gao, J.; Zingaro, R. A.;
Reibenspies, J. H.; Martell, A. E. Org. Lett. 2004, 6, 2453–2455. (c)
Gawronski, J.; Kwit, M.; Grajewski, J.; Gajewy, J.; Dlugokinska, A.
Tetrahedron: Asymmetry 2007, 18, 2632–2637. (d) Korich, A. L.; Hughes,
T. S. Org. Lett. 2008, 10, 5405–5408. (e) Kwit, M.; Zabicka, B.; Gawronski,
J. Dalton Trans. 2009, 6783–6789.
(9) (a) Shopsowitz, K. E.; Edwards, D.; Gallant, A. J.; MacLachlan,
M. J. Tetrahedron 2009, 65, 8113–8119. (b) Gallant, A. J.; Hui, J. K.-H.;
Zahariev, F. E.; Wang, Y. A.; MacLachlan, M. J. J. Org. Chem. 2005, 70,
7936–7946. (c) Gallant, A. J.; MacLachlan, M. J. Angew. Chem., Int. Ed.
2003, 42, 5307–5310.
(6) (a) Borisova, N. E.; Reshetova, M. D.; Ustynyuk, Y. A. Chem. ReV.
2007, 107, 46–79. (b) Vigato, P. A.; Tamburini, S.; Bertolo, L. Coord. Chem.
ReV. 2007, 251, 1311–1492. (c) MacLachlan, M. J. Pure Appl. Chem. 2006,
78, 873–888. (d) Frischmann, P. D.; Jiang, J.; Hui, J. K.-H.; Grzybowski,
J. J.; MacLachlan, M. J. Org. Lett. 2008, 10, 1255–1258. (e) de Geest,
D. J.; Noble, A.; Moubaraki, B.; Murray, K. S.; Larsena, D. S.; Brooker,
S. Dalton Trans. 2007, 467–475. (f) Hui, J. K.-H.; MacLachlan, M. J. Chem.
Commun. 2006, 2480–2482. (g) Ma, C.; Lo, A.; Abdolmaleki, A.;
MacLachlan, M. J. Org. Lett. 2004, 6, 3841–3844.
(10) Kleij, A. W. Chem.sEur. J. 2008, 14, 10520–10529.
(11) Schmittel, M.; Mahata, K. Inorg. Chem. 2009, 48, 822–824.
(12) Jiang, J.; MacLachlan, M. J. Chem. Commun. 2009, 5695–5697.
(13) Georghiou, P. E.; Li, Z.; Ashram, M.; Chowdhury, S.; Mizyed, S.;
Tran, A. H.; Al-Saraierh, H.; Miller, D. O. Synlett 2005, 879–891.
Org. Lett., Vol. 12, No. 5, 2010
1021