5490 Organometallics 2010, 29, 5490–5495
DOI: 10.1021/om100415z
Synthesis and Lewis Acidic Behavior of a Cationic
9-Thia-10-boraanthracene†
Takeshi Matsumoto, Casey R. Wade, and Franc-ois P. Gabbaı*
Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255
Received May 3, 2010
As part of our efforts in the chemistry of Lewis acidic organoboron compounds, we have synthesized a
cationic borane ([1]þ) featuring a 9-thia-10-boraanthracene moiety substituted at boron by the cationic
anilium group [4-(Me3N)-2,6-Me2-C6H2]þ. This new cationic borane has been fully characterized. Its
UV-vis spectrum features a low-energy band at λmax = 392 nm which, as confirmed by computational
studies, arises from a π-π* transition of the 9-thia-10-boraanthracene chromophore. As a result of the low
steric bulk present around the boron center and the inductive effects imparted by the anilium group, [1]þ
possesses unusual Lewis acidic properties and reacts with DMAP to form the corresponding adduct. This
derivative also binds both fluoride and cyanide anions in THF to afford 1-F and 1-CN whose stability
constants exceed 107 M-1. Although [1]þ is unstable in pure water, it can be used to selectively extract
cyanide under biphasic conditions in nitromethane/water.
Introduction
functionalities (Chart 1).9-14 Because of favorable Coulombic
effects, these boranes display a higher anion affinity and can
sometimes be used for the complexation of fluoride and cyanide
ions in aqueous environments. A common feature uniting these
cationic boranes concerns the use of sterically encumbered
ligands whose role is to protect the boron center from nucleo-
philic attack by water molecules. This steric protection can, for
The chemistry of Lewis acidic triarylboranes has experienced
a resurgence of activity fueled by the discovery of numerous
applications in the domains of catalysis1 and small molecule
activation2 as well as optoelectronics.3,4 Such organoboranes
have also been extensively studied as receptors for small anions
including fluoride and cyanide.3,5 Research carried out in the
past decade indicates that simple triarylboranes such as
Mes2PhB,6 Mes3B,7 and Ant3B8 (Ant =9-anthryl) form stable
fluoride complexes in organic solvents but not in water where
the high hydration energy of the fluoride anion prevents
complex formation. In an effort to overcome these limitations,
we and others have investigated the synthesis and anion binding
properties of triarylboranes decorated by peripheral cationic
(9) Broomsgrove, A. E. J.; A. Addy, D.; Di Paolo, A.; Morgan, I. R.;
Bresner, C.; Chislett, V.; Fallis, I. A.; Thompson, A. L.; Vidovic, D.;
Aldridge, S. Inorg. Chem. 2010, 49, 157–173.
(10) Kim, Y.; Zhao, H.; Gabbaı, F. P. Angew. Chem., Int. Ed. 2009, 48,
4957–4960. Wade, C. R.; Gabbaï, F. P. Dalton Trans. 2009, 9169–9175. Wade,
C. R.; Gabbaï, F. P. Inorg. Chem. 2009, 49, 714–720. Xu, Z.; Kim, S. K.; Han,
S. J.; Lee, C.; Kociok-Kohn, G.; James, T. D.; Yoon, J. Eur. J. Org. Chem. 2009,
3058–3065. Kim, Y.; Hudnall, T. W.; Bouhadir, G.; Bourissou, D.; Gabbaï, F. P.
Chem. Commun. 2009, 3729–3731. Hudnall, T. W.; Kim, Y.-M.; Bebbington,
M. W. P.; Bourissou, D.; Gabbaï, F. P. J. Am. Chem. Soc. 2008, 130, 10890–
10891. Neelakandan, P. P.; Ramaiah, D. Angew. Chem., Int. Ed. 2008, 47,
8407–8411. Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Inorg.
Chem. 2008, 47, 9256–9264. Coll, C.; Martinez-Manez, R.; Dolores Marcos,
M.; Sancenon, F.; Soto, J. Angew. Chem., Int. Ed. 2007, 46, 1675–1678. Koner,
A. L.; Schatz, J.; Nau, W. M.; Pischel, U. J. Org. Chem. 2007, 72, 3889–3895.
Sun, Y.; Ross, N.; Zhao, S. B.; Huszarik, K.; Jia, W. L.; Wang, R. Y.; Macartney,
D.; Wang, S. J. Am. Chem. Soc. 2007, 129, 7510–7511. Lee, M. H.; Gabbaï,
F. P. Inorg. Chem. 2007, 46, 8132–8138. Chiu, C.-W.; Gabbaï, F. P. J. Am.
Chem. Soc. 2006, 128, 14248–14249. Kubo, Y.; Ishida, T.; Minami, T.; James,
T. D. Chem. Lett. 2006, 35, 996–997. Bresner, C.; Aldridge, S.; Fallis, I. A.;
Jones, C.; Ooi, L.-L. Angew. Chem., Int. Ed. 2005, 44, 3606–3609. Badugu, R.;
Lakowicz, J. R.; Geddes, C. D. Sens. Actuators, B 2005, B104, 103–110.
Badugu, R.; Lakowicz, J. R.; Geddes, C. D. J. Fluoresc. 2004, 14, 693–703.
Herberich, G. E.; Englert, U.; Fischer, A.; Wiebelhaus, D. Eur. J. Inorg. Chem.
2004, 4011–4020. Fabre, B.; Lehmann, U.; Schluter, A. D. Electrochim. Acta
2001, 46, 2855–2861. Nicolas, M.; Fabre, B.; Simonet, J. Electrochim. Acta
2001, 46, 3421–3429. Nicolas, M.; Fabre, B.; Chapuzet, J. M.; Lessard, J.;
Simonet, J. J. Electroanal. Chem. 2000, 482, 211–216. Dusemund, C.;
Sandanayake, K. R. A. S.; Shinkai, S. Chem. Commun. 1995, 333–334.
(11) Kim, Y.; Gabbaı, F. P. J. Am. Chem. Soc. 2009, 131, 3363–3369.
(12) Agou, T.; Sekine, M.; Kobayashi, J.; Kawashima, T. Chem.;
Eur. J. 2009, 15, 5056–5062.
† Part of the Dietmar Seyferth Festschrift. This paper is dedicated to Prof.
Dietmar Seyferth in recognition of his scientific contribution and his role as
founding and long-time editor of Organometallics.
*To whom correspondence should be addressed. Phone: (þ1)979-845-
4719. Fax: (þ1)979-845-4719. E-mail: francois@tamu.edu.
(1) Piers, W. E.; Irvine, G. J.; Williams, V. C. Eur. J. Inorg. Chem.
2000, 2131–2142. Chen, E. Y.-X.; Marks, T. J. Chem. Rev. 2000, 100, 1391–
1434.
(2) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46–76.
(3) Hudson, Z. M.; Wang, S. Acc. Chem. Res. 2009, 42, 1584–1596.
Jakle, F. Boron: Organoboranes in Encyclopedia of Inorganic Chemistry,
€
2nd ed.; Wiley: Chichester, 2005.
(4) Entwistle, C. D.; Marder, T. B. Angew. Chem., Int. Ed. 2002, 41,
2927–2931. Entwistle, C. D.; Marder, T. B. Chem. Mater. 2004, 16, 4574–
4585. Yamaguchi, S.; Xu, C.; Okamoto, T. Pure Appl. Chem. 2006, 78, 721–
730. Yamaguchi, S.; Wakamiya, A. Pure Appl. Chem. 2006, 78, 1413–1424.
(5) Hudnall, T. W.; Chiu, C.-W.; Gabbaı, F. P. Acc. Chem. Res. 2009,
42, 388–397. Gabbaï, F. P. Angew. Chem., Int. Ed. 2003, 42, 2218–2221.
Hoefelmeyer, J. D.; Schulte, M.; Tschinkl, M.; Gabbaï, F. P. Coord. Chem.
Rev. 2002, 235, 93–103. Melaïmi, M.; Gabbaï, F. P. Adv. Organomet. Chem.
2005, 53, 61–99. Badugu, R.; Lakowicz, J. R.; Geddes, C. D. Curr. Anal.
Chem. 2005, 1, 157–170.
(13) Hudnall, T. W.; Gabbaı, F. P. J. Am. Chem. Soc. 2007, 129,
11978–11986.
(6) Huh, J. O.; Kim, H.; Lee, K. M.; Lee, Y. S.; Do, Y.; Lee, M. H.
Chem. Commun. 2010, 46, 1138–1140.
(7) Sole, S.; Gabbaı, F. P. Chem. Commun. 2004, 1284–1285.
(8) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2001,
123, 11372–11375.
(14) Lee, M. H.; Agou, T.; Kobayashi, J.; Kawashima, T.; Gabbaı,
F. P. Chem. Commun. 2007, 1133–1135. Agou, T.; Kobayashi, J.; Kim, Y.;
Gabbaï, F. P.; Kawashima, T. Chem. Lett. 2007, 36, 976–977. Agou, T.;
Kobayashi, J.; Kawashima, T. Inorg. Chem. 2006, 45, 9137–9144.
ꢀ
r
pubs.acs.org/Organometallics
Published on Web 07/01/2010
2010 American Chemical Society