Journal of the American Chemical Society
Page 4 of 6
1
2
3
4
5
6
7
8
2007, 13, 150; (c) Kumada Coupling of Aryl and Vinyl Tosylates
thank Prof. Dr. A. Fürstner, Prof. Dr. T. Ritter and Prof. Dr. K. R.
Pörschke for insightful discussions and generous support. We
thank Mr. A. Schlüter for TEM images.
under Mild Conditions, Limmert, M. E.; Roy, A. H.; Hartwig, J. F. J.
Org. Chem. 2005, 70, 9364; (d) Efficient Cross-Coupling of Aryl
Chlorides with Aryl Grignard Reagents (Kumada Reaction) Mediat-
ed by a Palladium/Imidazolium Chloride System, Huang, J.; Nolan,
S. P. J. Am. Chem. Soc. 1999, 121, 9889; (e) Dichloro[1,1'-
bis(diphenylphosphino)ferrocene]palladium(II): an effective catalyst
for cross-coupling of secondary and primary alkyl Grignard and al-
kylzinc reagents with organic halides, Hayashi, T.; Konishi, M.;
Kobori, Y.; Kumada, M.; Higuchi, T.; Hiritsu, K. J. Am. Chem. Soc.
1984, 106, 158.
REFERENCES
(1) (a) Selective carbon-carbon bond formation by cross-coupling of
Grignard reagents with organic halides. Catalysis by nickel-
phosphine complexes, Tamao, K.; Sumitani, K.; Kumada, M. J. Am.
Chem. Soc. 1972, 94, 4374; (b) Activation of Grignard reagents by
transition-metal complexes. A new and simple synthesis of trans-
stilbenes and polyphenyls, Corriu, J. P.; Masse, J. P. J. Chem. Soc.
Chem. Commun. 1972, 144.
9
(5) For selected examples, see: (a) Scope and Utility of a New Soluble
Copper Catalyst [CuBr−LiSPh−LiBr−THF]:ꢀ A Comparison with
Other Copper Catalysts in Their Ability to Couple One Equivalent of
a Grignard Reagent with an Alkyl Sulfonate, Burns, D. H.; Miller, J.
D. Chan, H. –K.; Delaney, M. O. J. Am. Chem. Soc. 1997, 119,
2125; (b) Copper-Catalyzed Cross-Coupling Reaction of Grignard
Reagents with Primary-Alkyl Halides: Remarkable Effect of 1‐
Phenylpropyne, Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.;
Kambe, N. Angew. Chem. Int. Ed. 2007, 46, 2086; (c) Cu-Catalyzed
Alkylation of Grignard Reagents: A New Efficient Procedure, Ca-
hiez, G.; Chaboche, C.; Jezequel, M. Tetrahedron 2000, 56, 2733;
(d) Downsizing Copper in Modern Cuprate Couplings, Lipshutz, B.
H. Acc. Chem. Res. 1997, 30, 277; (e) Copper in cross-coupling re-
actions: The post-Ullmann chemistry, Beletskaya, I. P.; Cheprakov,
A. V. Coord. Chem. Rev. 2004, 248, 2337; (f) Copper-Catalyzed
Cross-Coupling of Nonactivated Secondary Alkyl Halides and To-
sylates with Secondary Alkyl Grignard Reagents, Yang, C. –T.;
Zhang, Z. –Q.; Liang, J.; Liu, J. –H.; Lu, X. –Y.; Chen, H. –H.; Liu,
L. J. Am. Chem. Soc. 2012, 134, 11124.
(6) For examples of Ag-catalyzed Kumada coupling, see: (a) Coupling
of Grignard Reagents with Organic Halides, Tamura, M.; Kochi, J.
K. Synthesis, 1971, 303; (b) Silver-Catalyzed Benzylation and Al-
lylation Reactions of Tertiary and Secondary Alkyl Halides with
Grignard Reagents, Someya, H.; Ohmiya, H.; Yorimitsu, H.; Oshi-
ma, K. Org. Lett. 2008, 10, 969; (c) Silver-catalyzed cross-coupling
reactions of alkyl bromides with alkyl or aryl Grignard reagents,
Someya, H.; Yorimitsu, H.; Oshima, K. Tetrahedron Lett. 2009, 50,
3270.
(7) For selected examples, see: (a) Cobalt-Catalyzed Coupling Reaction
of Alkyl Halides with Allylic Grignard Reagents, Tsuji, T.; Yori-
mitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2002, 41, 4137; (b)
Cobalt(diamine)-Catalyzed Cross-coupling Reaction of Alkyl Hal-
ides with Arylmagnesium Reagents:ꢀ Stereoselective Constructions
of Arylated Asymmetric Carbons and Application to Total Synthesis
of AH13205, Ohmiya, H.; Yorimitsu, H.; Oshima, K. J. Am. Chem.
Soc. 2006, 128, 1886; (c) Cobalt-catalyzed alkenylation of organo-
magnesium reagents, Cahiez, G.; Avedissian, H. Tetrahedron Lett.
1998, 39, 6159; (d) Cobalt-Catalyzed Cross-Coupling Reaction be-
tween Functionalized Primary and Secondary Alkyl Halides and Al-
iphatic Grignard Reagents, Cahiez, G.; Chaboche, C.; Duplais, C.;
Giulliani, A.; Moyeux, A. Adv. Synth. Catal. 2008, 350, 1484; (e)
New Cobalt-Catalyzed Cross-Coupling Reactions of Heterocyclic
Chlorides with Aryl and Heteroaryl Magnesium Halides, Korn, T. J.;
Cahiez, G.; Knochel, P. Synlett. 2003, 12, 1892; (f) Cobalt-Catalysed
Carbon-Carbon Bond-Formation Reactions, Hess, W.; Treutwein, J.;
Hilt, G. Synthesis, 2008, 22, 3537; (g) Cobalt-catalyzed cross-
coupling reactions, Gosmini, C.; Begouin, J. –M.; Moncomble, A.
Chem. Commun., 2008, 3221.
(8) For selected references on alkyl-alkyl couplings, see: (a) Room-
Temperature Alkyl−Alkyl Suzuki Cross-Coupling of Alkyl Bro-
mides that Possess β Hydrogens, Netherton, M. R.; Dai, C.;
Neuschutz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099; (b)
Nickel-Catalyzed Cross-Coupling Reaction of Grignard Reagents
with Alkyl Halides and Tosylates:ꢀ Remarkable Effect of 1,3-
Butadienes, Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.;
Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222; (c) Nickel ‐
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) For selected extensive reviews, see: (a) Ni-Catalyzed C–C Couplings
Using Alkyl Electrophiles, Iwasaki, T.; Kambe, N. Top. Curr. Chem.
2016, 374, 66; (b) Well-defined nickel and palladium precatalysts
for cross-coupling, Hazari, N.; Melvin, P. R.; Beromi, M. M. Nat.
Chem. Rev. 2017, 1, 1; (c) Recent advances in homogeneous nickel
catalysis, Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature, 2014,
509, 299; (d) Nickel-Catalyzed Cross-Couplings Involving Car-
bon−Oxygen Bonds, Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.;
Zhang, N.; Resmerita, A. –M.; Garg, N. K.; Percec, V. Chem. Rev.
2011, 111, 1346; For examples on high valent Ni(III) and Ni(IV)
complexes, see: (e) Design, synthesis, and carbon-heteroatom cou-
pling reactions of organometallic nickel(IV) complexes, Camasso,
N. M.; Sanford, M. S. Science, 2015, 347, 1218; (f) Oxidation of
Ni(II) to Ni(IV) with Aryl Electrophiles Enables Ni-Mediated Aryl–
CF3 Coupling, Bour, J. R.; Camasso, N. M.; Sanford, M. S. J. Am.
Chem. Soc. 2015, 137, 8034; (g) Carbon–Carbon Bond-Forming Re-
ductive Elimination from Isolated Nickel(III) Complexes, Bour, J. R.
Camasso, N. M.; Meucci, E. A.; Kampf, J. W.; Canty, A. J.; Sanford,
M. S. J. Am. Chem. Soc. 2016, 138, 16105; (h) Isolated Organome-
tallic Nickel(III) and Nickel(IV) Complexes Relevant to Carbon–
Carbon Bond Formation Reactions, Schultz, J. W.; Fuchigami, K.;
Zheng, B.; Rath, N. P.; Mirica, L. M. J. Am. Chem. Soc. 2016, 138,
12928; (i) Organometallic Nickel(III) Complexes Relevant to Cross-
Coupling and Carbon–Heteroatom Bond Formation Reactions,
Zheng, B.; Tang, F.; Luo, J.; Schultz, J. W.; Rath, N. P.; Mirica, L.
M. J. Am. Chem. Soc. 2014, 136, 6499; (j) Oxidative C–C Bond
Formation Reactivity of Organometallic Ni(II), Ni(III), and Ni(IV)
Complexes, Watson, M. B.; Rath, N. P.; Mirica, L. M. J. Am. Chem.
Soc. 2017, 139, 35; (k) Aromatic Methoxylation and Hydroxylation
by Organometallic High-Valent Nickel Complexes, Zhou, W.;
Schultz, J. W.; Rath, N. P.; Mirica, L. M. J. Am. Chem. Soc., 2015,
137, 7604; (l) Trifluoromethylation of a Well‐Defined Square‐
Planar Aryl‐NiII Complex involving NiIII/CF3. and NiIV−CF3 Inter-
mediate Species, Rovira, M.; Roldan-Gomez, S.; Martin-
Diaconescu, V.; Whiteoak, C. J.; Company, A.; Luis, J. M.; Ribas,
X. Chem. – Eur. J. 2017, 23, 11662.
(3) For selected references, see: (a) Iron-Catalyzed Cross-Coupling
Reactions, Fürstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am.
Chem. Soc. 2002, 124, 13856; (b) Iron(III) salen-type catalysts for
the cross-coupling of aryl Grignards with alkyl halides bearing β-
hydrogens, Bedford, R. B.; Bruce, D. W.; Frost, R. M.; Goodby, J.
W.; Hird, M. Chem. Commun. 2004, 24, 2822; (c) Iron-Catalyzed
Cross-Coupling of Primary and Secondary Alkyl Halides with Aryl
Grignard Reagents, Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura,
E. J. Am. Chem. Soc. 2004, 126, 3686; For recent reviews and full
articles on Fe-catalyzed cross-couplings, see: (d) Iron Catalysis in
Organic Synthesis: A Critical Assessment of What It Takes To Make
This Base Metal a Multitasking Champion, Fürstner, A. ACS Cent.
Sci. 2016, 2, 778; (e) Iron Catalysis in Organic Synthesis, Bauer, I.;
Knölker, H. –J.; Chem. Rev. 2015, 115, 3170; (f) Recent advances in
iron-catalysed cross coupling reactions and their mechanistic under-
pinning, Mako, T. L.; Byers, J. A. Inorg. Chem. Front. 2016, 3, 766;
(g) Active Species and Mechanistic Pathways in Iron-Catalyzed C–C
Bond-Forming Cross-Coupling Reactions, Cassani, C.; Bergonzini,
G.; Wallentin, C. –J. ACS Catal. 2016, 6, 1640.
Catalyzed Cross‐Coupling of Non‐activated and Functionalized
Alkyl Halides with Alkyl Grignard Reagents, Vechorkin, O.; Hu, X.
Angew. Chem. Int. Ed. 2009, 48, 2937; (d) Ligand Redox Effects in
the Synthesis, Electronic Structure, and Reactivity of an Alkyl-Alkyl
Cross-Coupling Catalyst, Jones, G. D.; Martin, J. L.; McFarland, C.;
Allen, O. R.; Hall, R. E.; Haley, A. D.; Brandon, J. R.; Konovalova,
(4) For selected examples, see: (a) Pd-Catalyzed Kumada−Corriu Cross-
Coupling Reactions at Low Temperatures Allow the Use of
Knochel-type Grignard Reagents, Martin, R.; Buchwald, S. L. J. Am.
Chem. Soc. 2007, 129, 3845; (b) Biaryls Made Easy: PEPPSI and the
Kumada–Tamao–Corriu Reaction, Organ, M. G.; Abdel-Hadi, M.;
Avola, S.; Hadei, N.; Nasielski, J.; O’Brien, C. J. Chem. –Eur. J.
ACS Paragon Plus Environment