ORGANIC
LETTERS
2011
Vol. 13, No. 14
3592–3595
Asymmetric Synthesis of Chiral
δ-Lactones Containing Multiple
Contiguous Stereocenters
†
†
†
†
~ꢀ
Jennifer Peed, Ignacio Perinan Domınguez, Iwan R. Davies, Matt Cheeseman,
´
†
James E. Taylor, Gabriele Kociok-Kohn, and Steven D. Bull*
‡
,†
€
Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K., and
Department of Chemical Crystallography, University of Bath, Bath, BA2 7AY, U.K.
Received May 6, 2011
ABSTRACT
A versatile methodology for the asymmetric synthesis of chiral δ-lactones containing multiple contiguous stereocenters has been developed that relies on
a series of Evans’ aldol, hydroxyl-directed cyclopropanation, methanolysis, and Hg(II) mediated cyclopropane ring-opening reactions for stereocontrol.
The δ-lactone functional group appears as a fragment in
many natural products that exhibit a wide range of biolo-
gical activity.1 Many of these structurally complex δ-lac-
tones contain multiple contiguous stereocenters, which
means that their asymmetric synthesis can represent a
significant challenge.2 Consequently, a wide range of meth-
odology hasbeen developed for theirsynthesis,3 with chiral
N-acyl-oxazolidin-2-ones having often been used to pre-
pare δ-lactones as intermediates for natural product synth-
esis. These protocols are generally based on the stereoselective
addition of enolates of chiral N-acyl-oxazolidin-2-ones to
enantiopure electrophiles4 or stereoselective aldol reactions
of chiral β-keto-N-acyl-oxazolidin-2-one enolates.5 We
now report herein an alternative strategy that employs a
chiral N-acyl-oxazolidin-2-one to prepare enantiomeri-
cally pure cyclopropane esters that undergo regioselective
Hg(II) ring-openingreactionstoaffordδ-lactonescontain-
ing up tofourcontiguous stereocenters withexcellentlevels
of stereocontrol.
We have recently reported the development of novel
synthetic strategies that employ the reversible generation of
“temporary stereocenters” for the asymmetric synthesis of
chiral aldehydes.6 One of these protocols employs highly
diastereoselective hydroxyl-directed syn-cyclopropanation
reactions of β-alkenyl-β-hydroxyl-N-acyl-oxazolidin-2-ones
1 as a key reaction (Scheme 1, reaction 1) for the asymmetric
synthesis of chiral cyclopropane carboxaldehydes.7 It has
† Department of Chemistry.
‡ Department of Chemical Crystallography.
(1) (a) Chiu, P.; Leung, L. T.; Ko, C. B. B. Nat. Prod. Rep. 2010, 27,
1066–1083. (b) Florence, G. J.; Gardner, N. M.; Paterson, I. Nat. Prod.
Rep. 2008, 25, 342–375. (c) Boucard, V.; Broustal, G.; Campagne, J. M.
Eur. J. Org. Chem. 2007, 225–236.
(2) (a) Cao, H.; Parker, K. A. Org. Lett. 2008, 10, 1353–1356. (b)
Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.;
Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc.
2000, 122, 8654–8664. (c) Wilkinson, A. L.; Hanefeld, U.; Wilkinson, B.;
Leadlay, P. F.; Staunton, J. Tetrahedron Lett. 1998, 39, 9827–9830. (d)
Mukai, C.; Hirai, S.; Hanaoka, M. J. Org. Chem. 1997, 62, 6619–6626.
(3) (a) El-Awa, A.; Mollat du Jourdin, X.; Fuchs, P. L. J. Am. Chem.
Soc. 2007, 129, 9086–9093. (b) Davies, S. G.; Nicholson, R. L.; Smith,
A. D. Org. Biomol. Chem. 2004, 2, 3385–3400.
(5) (a) Castonguay, R.; He, W.; Chen, A. Y.; Khosla, C.; Cane, D. E.
J. Am. Chem. Soc. 2007, 129, 13758–13769. (b) Yuan, Y.; Men, H.; Lee,
C. J. Am. Chem. Soc. 2004, 126, 14720–14721. (c) Mulzer, J.; Pichlmair,
S.; Green, M. P.; Marques, M. M. B.; Martin, H. J. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 11980–11985.
(6) Niyadurupola, D. G.; Davies, I. R.; Wisedale, R.; Bull, S. D. Eur.
J. Org. Chem. 2007, 5487–5491.
(7) (a) Aitken, D. J.; Bull, S. D.; Davies, I. R.; Drouin, L.; Ollivier, J.;
Peed, J. Synlett 2010, 2729–2732. (b) Cheeseman, M.; Davies, I. R.; Axe,
P.; Johnson, A, L.; Bull, S. D. Org. Biomol. Chem. 2009, 7, 3537–3548. (c)
Cheeseman, M.; Bull, S. D. Synlett 2006, 1119–1121. (d) Cheeseman, M.;
Feuillet, F. J. P.; Johnson, A. L.; Bull, S. D. Chem. Commun. 2005, 2372–
2374. (e) Green, R.; Cheeseman, M.; Duffill, S.; Merritt, A.; Bull, S. D.
Tetrahedron Lett. 2005, 46, 7931–7934.
(4) (a) Dias, L. C.; Lima, D. J. P.; Gonc-alves, C. C. S.; Andricopulo,
A. D. Eur. J. Org. Chem. 2009, 1491–1494. (b) Carrick, J. D.; Jennings,
M. P. Org. Lett. 2009, 11, 769–772. (c) Eustache, F.; Dalko, P. I.; Cossy,
J. J. Org. Chem. 2003, 68, 9994–10002.
r
10.1021/ol2012023
Published on Web 06/14/2011
2011 American Chemical Society