H. Zhu et al. / Tetrahedron 67 (2011) 8458e8464
8463
excess of SOCl2 was then removed under vacuum to afford a white
solid, which was mixed with 5d (205.4 mg, 0.85 mmol) and dis-
solved in 40 mL of toluene. The resulted solution was refluxed
overnight. After removal of the solvent, the residue was applied to
chromatography using CH2Cl2/ethyl acetate¼20:1 as the eluents to
afford product 6d (256.3 mg, 0.58 mmol, yield: 68%).
31.1. TOF MS: m/z¼764.1 [M], 786.1 [100%] [MþNa]þ, and 802.1
[MþK]þ.
4.6.2. Pentamer 13. 1H NMR (400 MHz, CDCl3) ppm: 12.38 (s, 2H),
12.31 and (s, 2H), 8.67 (d, J¼6.92 Hz, 2H), 8.53 (d, J¼7.72 Hz, 2H),
8.31 (m, J¼7.60, 6.00, 1.20, 7.60 Hz, 4H), 8.17 (t, J¼8.00 and 7.60 Hz,
2H), 8.13 (6.40, 5.6 Hz, 3 Hz), 8.01 (d, J¼8.00 Hz, 2H), 3.88 (t, J¼6.00
and 6.00 Hz, 4Hꢁ65%), 3.74 (t, J¼5.44 Hz, 4Hꢁ35%), 3.48 (t, J¼6.00
and 6.00 Hz, 4Hꢁ65%), 3.43 (t, J¼5.60, 6.24 Hz, 4Hꢁ35%), 1.94
(quintet, J¼6.00, 5.76Hz, 4H). 13C NMR (100 MHz, CDCl3) ppm:
162.1, 161.8, 160.5, 160.2, 160.0, 148.6, 147.7, 147.4, 145.2, 141.3, 140.3,
139.6, 129.0, 128.4, 127.8, 127.2, 126.3, 65.1, 62.4, 44.3, 40.9, 31.1,
29.8. TOF MS: m/z¼934.1 [MþNa]þ, and 950.2 [MþK]þ.
4.5.2. Dimer monoacid 10. Compound 6d (304 mg, 0.80 mmol) was
dissolved in a mixed solvents of dioxane (50 ml) and water (5 ml),
to which,1 mol/L of NaOH aqueous solution (0.80 ml) was dropwise
added. After stirred for 3 h, the reaction solution was washed with
saturated NaCl solution and water each for twice. The organic layer
was then dried over Na2SO3. After removal of organic solvent, the
residue was applied to chromatography using CH2Cl2/ethyl acetate/
acetic acid¼10:10:1 as the eluents to afford product 10 (164.5 mg,
0.435 mmol, yield: 55%). 1H NMR (400 MHz, CDCl3) ppm: 13.01 (s,
1H), 8.68 (d, J¼7.60 Hz, 1H), 8.59 (d, J¼8.00 Hz, 1H), 8.39 (d,
J¼8.00 Hz, 1H), 8.26 (t, J¼7.60 and 7.60 Hz, 1H), 8.17 (t, J¼8.00 and
8.00 Hz, 1H), 4.72 (t, J¼6.24 and 6.24 Hz, 2H), 3.70 (t, J¼6.40 and
6.40 Hz, 2H), 2.33 (quintet, J¼6.24, 6.24, 6.24, 6.24 Hz, 2H). 13C NMR
The splitting of the imide hydrogen and 3-Cl-1-propyl hydro-
gens for the tetrameric and pentameric PIOs may be due to the
different local conformations of 3-Cl-1-propyl terminal after for-
mation of helical structure.
Acknowledgements
(100 MHz, CDCl3)
d ppm: 164.5, 164.3, 163.7, 163.5, 148.5, 148.4,
This work was financially supported by NSFC (Nos. 20872145
and 20973182), the Chinese Academy of Sciences, Projects 973
(2011CB400808 and 2007CB936401).
148.2, 148.1, 139.4, 139.3, 138.9, 138.8, 128.3, 128.0, 63.0, 41.4, 31.4.
TOF MS: m/z¼390.1 [MꢀH]ꢀ.
4.5.3. Dimer monoamide 11. Compound 10 (287.8 mg, 0.77 mmol)
was dissolved in SOCl2 (5 ml). The resulted mixture was refluxed for
3 h. The excess of SOCl2 was then removed under vacuum. The
resulted white solid was then dissolved in 50 mL of CH2Cl2. To
which ammon gas was bubbled inside for 2 h. Then the solution
was washed with 1 M hydrochloric acid aqueous solution, dilute
Na2CO3 aqueous solution, and water each for twice. Removal of the
solvent afforded product 10 (258.3 mg, 0.6857 mmol, yield: 90%).
1H NMR (400 MHz, CDCl3) ppm: 13.01 (s, 1H), 8.68 (d, J¼7.60 Hz,
1H), 8.59 (d, J¼8.00 Hz, 1H), 8.39 (d, J¼8.00 Hz, 1H), 8.26 (t, J¼7.60
and 7.60 Hz,1H), 8.17 (t, J¼8.00 and 8.00 Hz,1H), 7.92 (br s,1H), 5.68
(br s, 1H), 4.72 (t, J¼6.24 and 6.24 Hz, 2H), 3.70 (t, J¼6.40 and
6.40 Hz, 2H), 2.33 (quintet, J¼6.24, 6.24, 6.24, 6.24 Hz, 2H). 13C NMR
Supplementary data
Supplementary data associated with this article can be found in
clude MOL files and InChiKeys of the most important compounds
described in this article.
References and notes
1. (a) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001,
101, 3893e4011; (b) Gong, B. Chem.dEur. J. 2001, 7, 4336e4342; (c) Huc, I. Eur. J.
Org. Chem. 2004, 17e29; (d) Li, Z.-T.; Hou, J.-L.; Li, C. Acc. Chem. Res. 2008, 41,
1343e1353.
2. (a) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219e3232;
(b) Seebach, D.; Beck, A. K.; Bierbaum, D. J. Chem. Biodiversity 2004, 1,
1111e1239.
(100 MHz, CDCl3)
d ppm: 165.2, 163.3, 161.3, 161.0, 149.2, 149.1,
147.5, 146.8, 139.4, 139.3, 128.4, 126.8, 126.3, 125.9, 63.1, 41.6, 31.5.
TOF MS: m/z¼390.0 [M].
3. (a) Porter, E. A.; Wang, X.; Lee, H.-S.; Weisblum, B.; Gellman, S. H. Nature 2000,
404, 565; (b) Sharma, G. V. M.; Jayaprakash, P.; Narsimulu, K.; Sankar, A. R.;
Reddy, K. R. Angew. Chem., Int. Ed. 2006, 45, 2944e2947; (c) Daniels, D. S.;
Petersson, E. J.; Qiu, J. X.; Schepartz, A. J. Am. Chem. Soc. 2007, 129, 1532e1533;
(d) Beke, T.; Csizmadia, I. G.; Perczel, A. J. Am. Chem. Soc. 2006, 128, 5158e5167;
4.6. One-pot synthesis of trimer (7d), tetramer (12), and
pentamer (13)
€
(e) Gademann, K.; Hane, A.; Rueping, M.; Jaun, B.; Seebach, D. Angew. Chem., Int.
Ed. 2003, 42, 1534e1537.
4. (a) Sharma, G. V. M.; Nagendar, P.; Jayaprakash, P.; Krishna, P. R.; Ramakrishna,
K. V. S.; Kunwar, A. C. Angew. Chem., Int. Ed. 2005, 44, 5878e5882; (b) Vasudev,
P. G.; Ananda, K.; Chatterjee, S.; Aravinda, S.; Shamala, N.; Balaram, P. J. Am.
Chem. Soc. 2007, 129, 4039e4048; (c) Choi, S. H.; Guzei, I. A.; Gellman, S. H. J.
Am. Chem. Soc. 2007, 129, 13708e13781.
5. Rodriguez, J. M.; Hamilton, A. D. Angew. Chem., Int. Ed. 2007, 46, 8614e8617.
6. (a) Oh, K.; Jeong, K. S.; Moore, J. S. Nature 2001, 414, 889e893; (b) Jones, T. V.;
Slutsky, M. M.; Laos, R.; de Greef, T. F. A.; Tew, G. N. J. Am. Chem. Soc. 2005, 127,
17235e17240; (c) Yang, L.; Gordon, V. D.; Mishra, A.; Som, A.; Purdy, K. R.;
Davis, M. A.; Tew, G. N.; Wong, G. C. L. J. Am. Chem. Soc. 2007, 129, 12141e12147.
7. (a) Han, J. J.; Wang, W.; Li, A. D. Q. J. Am. Chem. Soc. 2006, 128, 672e673; (b)
Gabriel, G. J.; Sorey, S.; Iverson, B. L. J. Am. Chem. Soc. 2005, 127, 2637e2640.
8. (a) Goto, H.; Katagiri, H.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2006, 128,
7176e7178; (b) Abe, H.; Masuda, N.; Waki, M.; Inouye, M. J. Am. Chem. Soc.
2005, 127, 16189e16196; (c) Li, J.; Wisner, J. A.; Jennings, M. C. Org. Lett. 2007, 9,
3267e3269; (d) Naidu, V. R.; Kim, M. C.; Suk, J.-M.; Kim, H.-J.; Lee, M.; Sim, E.;
Jeong, K.-S. Org. Lett. 2008, 10, 5373e5376.
Pyridine-2,6-dicarboxylic acid (1, 77.81 mg, 0.47 mmol) was
dissolved in 5 mL of SOCl2. The resulted mixture was refluxed for
3 h. The excess of SOCl2 was then removed under vacuum. The
resulted white solid of 2 was dissolved in 60 mL of toluene, to
which compound 11 (303.4 mg, 0.78 mmol) was added. The
resulted solution was allowed to reflux overnight. After removal of
the solvent the residue was applied to chromatography using
CH2Cl2/acetonitrile¼20:1 as the eluents to afford 7d (105 mg,
0.171 mmol, yield: 34%), using CH2Cl2/acetonitrile¼10:1 as the el-
uents to afford 12 (125.6 mg, 0.164 mmol, yield: 33%), using CH2Cl2
/acetonitrile¼4:1 as the eluents to afford 13 (129 mg, 0.141 mmol,
yield: 28%).
9. (a) Okamoto, I.; Nabeta, M.; Hayakawa, Y.; Morita, N.; Takeya, T.; Masu, H.;
Azumaya, I.; Tamura, O. J. Am. Chem. Soc. 2007, 129, 1892e1893; (b) Giuseppone,
N.; Schmitt, J. L.; Lehn, J. M. Angew. Chem., Int. Ed. 2004, 43, 4902e4906; (c)
King, E. D.; Tao, P.; Sanan, T. T.; Hadad, C. M.; Parquette, J. R. Org. Lett. 2008, 10,
1671e1674; (d) Meudtner, R. M.; Hecht, S. Angew. Chem., Int. Ed. 2008, 49,
4926e4930.
4.6.1. Tetramer 12. 1H NMR (400 MHz, CDCl3) ppm: 12.81 (s, 1H),
12.53 (s, 2H), 8.65 (m, J¼4.72 Hz, 2H), 8.54 (d, J¼8.0 Hz, 2H), 8.21
(m, J¼2.80 Hz, 4H), 8.16 (t, J¼8.00 and 7.60 Hz, 2H), 8.06 (d,
J¼7.60 Hz, 2H), 4.01 (t, J¼5.44 and 6.00 Hz, 4Hꢁ80%), 3.89 (t,
J¼5.60 Hz, 4Hꢁ20%), 3.53 (t, J¼6.00 and 6.00 Hz, 4Hꢁ80%), 3.48 (t,
J¼5.60 and 5.60 Hz, 4Hꢁ20%), 2.02 (quintet, J¼6.40, 5.76Hz, 4H).
13C NMR (100 MHz, CDCl3) ppm: 161.9, 161.4, 160.6, 160.2, 148.9,
148.5, 147.8, 145.3, 140.1, 139.9, 128.9, 127.1, 126.9, 126.7, 62.5, 40.8,
10. (a) Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J. M. Nature 2000, 407,
ꢁ
720e723; (b) Dolain, C.; Zhan, C.; Leger, J. M.; Daniels, L.; Huc, I. J. Am. Chem.
Soc. 2005, 127, 2400e2401; (c) Zhan, C.; Leger, J.-M.; Huc, I. Angew. Chem., Int.
Ed. 2006, 45, 4625e4628.
ꢁ
11. (a) Hou, J. L.; Yi, H. P.; Shao, X. B.; Li, C.; Wu, Z. Q.; Jiang, X. K.; Wu, L. Z.; Tung, C.
H.; Li, Z. T. Angew. Chem., Int. Ed. 2006, 45, 796e800; (b) Cai, W.; Wang, G.-T.;