Dyes for Electron-Accepting Materials
81, 3085–3087; j) H. Langhals, S. Saulich, Chem. Eur. J. 2002,
8, 5630–5643.
H), 9.60 (d, J = 8.0 Hz, 1 H), 9.42–9.37 (m, 2 H), 9.22–9.17 (m, 2
H), 8.92 (d, J = 8.0 Hz, 1 H), 8.38 (t, J = 4.0 Hz, 1 H), 8.27 (t, J
= 4.0 Hz, 1 H), 7.88 (t, J = 4.0 Hz, 2 H), 7.59–7.54 (m, 2 H), 7.43
(t, J = 4.0 Hz, 4 H), 2.96–2.87 (m, 4 H), 1.27–1.23 (m, 24 H) ppm.
13C NMR (100 MHz, CDCl3): δ = 186.71, 181.79, 163.18, 163.02,
162.94, 162.87, 161.62, 144.88, 135.02, 134.69, 134.59, 134.24,
134.00, 133.78, 133.48, 133.38, 132.72, 131.39, 130.18, 129.76,
129.66, 128.99, 128.23, 127.91, 127.82, 127.56, 127.48, 127.08,
126.76, 126.50, 125.99, 125.89, 124.79, 124.00, 123.74, 123.37,
122.96, 122.81, 122.57, 122.01, 121.73, 119.86, 35.57, 30.53, 28.44,
23.16, 23.09 ppm. MS (MALDI-TOF): m/z = 937.5 [M + Na]+.
C62H48N2O4 (885.07): calcd. C 81.38, H 5.07, N 3.06; found C
81.33, H 5.09, N 3.04.
[6] a) B. A. Jones, M. J. Ahrens, M.-H. Yoon, A. Facchetti, T. J.
Marks, M. R. Wasielewski, Angew. Chem. 2004, 116, 6523; An-
gew. Chem. Int. Ed. 2004, 43, 6363–6366; b) R. T. Weitz, K.
Amsharov, U. Zschieschang, E. B. Villas, D. K. Goswami, M.
Burghard, H. Dosch, M. Jansen, K. Kern, H. Klauk, J. Am.
Chem. Soc. 2008, 130, 4637–4645; c) H. Z. Chen, M. M. Ling,
X. Mo, M. M. Shi, M. Wang, Z. Bao, Chem. Mater. 2007, 19,
816–824; d) R. J. Chesterfield, J. C. McKeen, C. R. Newman,
P. C. Ewbank, D. A. da Silva Filho, J.-L. Brédas, L. L. Miller,
K. R. Mann, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19281–
19292; e) P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Ge-
lorme, L. L. Kosbar, T. O. Graham, A. Curioni, W. Andreoni,
Appl. Phys. Lett. 2002, 80, 2517–2519.
[7] a) N. G. Pschirer, C. Kohl, F. Nolde, J. Qu, K. Müllen, Angew.
Chem. 2006, 118, 1429; Angew. Chem. Int. Ed. 2006, 45, 1401–
1404; b) L. Fan, Y. Xu, H. Tian, Tetrahedron Lett. 2005, 46,
4443–4447; c) Y. Li, Z. Qing, Y. Yu, T. Liu, R. Jiang, Y. Li,
Chem. Asian J. 2012, DOI: 10.1002/asia.201200243; d) M. J.
Lin, B. Fimmel, K. Radacki, F. Würthner, Angew. Chem. 2011,
123, 11039; Angew. Chem. Int. Ed. 2011, 50, 10847–10850.
[8] a) H. Quante, Y. Geerts, K. Müllen, Chem. Mater. 1997, 9,
495–500; b) F. Würthner, C. Thalacker, A. Sautter, Adv. Mater.
1999, 11, 754–758.
Supporting Information (see footnote on the first page of this arti-
cle): 1H and 13C NMR spectra for 1 and 2, photos of the visible
colors and visual fluorescence colors of 1 and 2, computational
investigations on 1 and 2, TGA profiles of 1 and 2, and process for
the fabrication of the solar cell devices, details of CV experiments.
Acknowledgments
[9] P. Rajasingh, R. Cohen, E. Shirman, L. J. W. Shimon, B. Rybt-
chinski, J. Org. Chem. 2007, 72, 5973–5979.
This work was supported by the National Nature Science Founda-
tion of China (NSFC) (grant number 21031006), the Chinese–Ger-
man NSFC–DFG joint fund (TRR 61), and the National Basic
Research 973 Program of China (grant numbers 2011CB932302
and 2012CD932900).
[10]
a) W. Qiu, S. Chen, X. Sun, Y. Liu, D. Zhu, Org. Lett. 2006,
8, 867–870; b) S. Muller, K. Müllen, Chem. Commun. 2005, 32,
4045–4046.
[11]
[12]
Y. Geerts, H. Quante, H. Platz, R. Mahrt, M. Hopmeier, A.
Bohm, K. Müllen, J. Mater. Chem. 1998, 8, 2357–2369.
Y. Avlasevich, C. Li, K. Müllen, J. Mater. Chem. 2010, 20,
3814–3826.
[1] a) W. Wang, W. Wan, H.-H. Zhou, S. Niu, A. D. Q. Li, J. Am.
Chem. Soc. 2003, 125, 5248–5249; b) L. Zang, R. Liu, M. W.
Holman, K. T. Nguyen, D. M. Adams, J. Am. Chem. Soc. 2002,
124, 10640–10641; c) N. I. Georgiev, A. R. Sakr, V. B. Bojinov,
Dyes Pigm. 2011, 91, 332–339; d) T. Heek, C. Fasting, C. Rest,
X. Zhang, F. Würthner, R. Haag, Chem. Commun. 2010, 46,
1884–1886.
[2] a) X. Guo, D. Zhang, D. Zhu, Adv. Mater. 2004, 16, 125–130;
b) Y. Li, H. Zheng, Y. Li, S. Wang, Z. Wu, P. Liu, Z. Gao, H.
Liu, D. Zhu, J. Org. Chem. 2007, 72, 2878–2885.
[3] a) J. Baggerman, D. C. Jagesar, R. A. L. Vallée, J. Hofkens,
F. C. De Schryver, F. Schelhase, F. Vögtle, A. M. Brouwer,
Chem. Eur. J. 2007, 13, 1291–1299; b) B. J. Slater, E. S. Davies,
S. P. Argent, H. Nowell, W. Lewis, A. J. Blake, N. R. Champ-
ness, Chem. Eur. J. 2011, 17, 14746–14751; c) Y. Li, H. Li, Y.
Li, H. Liu, S. Wang, X. He, N. Wang, D. Zhu, Org. Lett. 2005,
7, 4835–4838.
[4] a) X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner,
M. R. Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268–
284; b) C. Huang, S. Barlow, S. R. Marder, J. Org. Chem. 2011,
76, 2386–2407; c) W. Lu, J. P. Gao, Z. Y. Wang, Y. Qi, G. G.
Sacripante, J. D. Duff, P. R. Sundararajan, Macromolecules
1999, 32, 8880–8885.
[5] a) L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons,
R. H. Friend, J. D. MacKenzie, Science 2001, 293, 1119–1122;
b) C. Li, H. Wonneberger, Adv. Mater. 2012, 24, 613–636; c)
C. Ego, D. Marsitzky, S. Becker, J. Zhang, A. C. Grimsdale, K.
Müllen, J. D. MacKenzie, C. Silva, R. H. Friend, J. Am. Chem.
Soc. 2003, 125, 437–443; d) J. J. Dittmer, E. A. Marseglia,
R. H. Friend, Adv. Mater. 2000, 12, 1270–1274; e) Z. Liang,
R. A. Cormier, A. M. Nardes, B. A. Gregg, Synth. Met. 2011,
161, 1014–1021; f) B. A. Gregg, R. A. Cormier, J. Am. Chem.
Soc. 2001, 123, 7959–7960; g) Y. Liu, N. Wang, Y. Li, H. Liu,
Y. Li, J. Xiao, X. Xu, C. Huang, S. Cui, D. Zhu, Macromole-
cules 2005, 38, 4880–4887; h) Y. Liu, Y. Li, L. Jiang, H. Gan,
H. Liu, Y. Li, J. Zhuang, F. Lu, D. Zhu, J. Org. Chem. 2004,
69, 9049–9054; i) A. J. Breeze, A. Salomon, D. S. Ginley, B. A.
Gregg, H. Tillmann, H.-H. Horhold, Appl. Phys. Lett. 2002,
[13]
[14]
[15]
F. Würthner, Chem. Commun. 2004, 14, 1564–1579.
H. Langhals, S. Kirner, Eur. J. Org. Chem. 2000, 365–380.
a) Y. Li, Y. Li, J. Li, C. Li, X. Liu, M. Yuan, H. Liu, S. Wang,
Chem. Eur. J. 2006, 12, 8378–8385; b) Y. Li, L. Xu, T. Liu, Y.
Yu, H. Liu, Y. Li, D. Zhu, Org. Lett. 2011, 13, 5692–5695.
G. Horowitz, F. Kouki, P. Spearman, D. Fichou, C. Nogues,
X. Pan, F. Garnier, Adv. Mater. 1996, 8, 242–245.
a) Y. Liu, S. Xiao, H. Li, Y. Li, H. Liu, F. Lu, J. Zhuang, D.
Zhu, J. Phys. Chem. B 2004, 108, 6256–6260; b) S. Suzuki, M.
Kozaki, K. Nozaki, K. Okada, J. Photochem. Photobiol. C:
Photochem. Rev. 2011, 12, 269–292; c) Y. Zhao, M. R. Wasie-
lewski, Tetrahedron Lett. 1999, 40, 7047–7050.
[16]
[17]
[18]
[19]
[20]
R. K. Dubey, A. Efimov, H. Lemmetyinen, Chem. Mater. 2011,
23, 778–788.
R. M. F. Batista, E. Oliveira, S. P. G. Costa, C. Lodeiro,
M. M. M. Raposo, Org. Lett. 2007, 9, 3201–3204.
a) H. Görner, Photochem. Photobiol. 2003, 77, 171–179; b) J.
Yang, A. Dass, A.-M. M. Rawashdeh, C. Sotiriou-Leventis,
M. J. Panzner, D. S. Tyson, J. D. Kinder, N. Leventis, Chem.
Mater. 2004, 16, 3457–3468.
[21]
[22]
a) J. Fabian, H. Nakazumi, M. Matsuoka, Chem. Rev. 1992,
92, 1197–1226; b) C. Kohl, S. Becker, K. Müllen, Chem. Com-
mun. 2002, 23, 2778–2779.
C. A. Wijesinghe, M. Niemi, N. V. Tkachenko, N. K. Subbai-
yan, M. E. Zandler, H. Lemmetyinen, F. D’Souza, J. Por-
phyrins Phthalocyanines 2011, 15, 391–400.
[23]
[24]
M. Mamada, J.-i. Nishida, S. Tokito, Y. Yamashita, Chem.
Commun. 2009, 16, 2177–2179.
J. Hankache, O. S. Wenger, Chem. Commun. 2011, 47, 10145–
10147.
[25]
[26]
M. Thelakkat, H.-W. Schmidt, Adv. Mater. 1998, 10, 219–223.
a) C.-C. Chao, M.-k. Leung, Y. O. Su, K.-Y. Chiu, T.-H. Lin,
S.-J. Shieh, S.-C. Lin, J. Org. Chem. 2005, 70, 4323–4331; b)
F. O. Holtrup, G. R. J. Müller, H. Quante, S. De Feyter, F. C.
De Schryver, K. Müllen, Chem. Eur. J. 1997, 3, 219–225.
G. Seybold, G. Wagenblast, Dyes Pigm. 1989, 11, 303–317.
[27]
Eur. J. Org. Chem. 2013, 300–306
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
305