Organic Letters
Letter
(12) Buden
1174.
́
, M. E.; Guastavino, J. F.; Rossi, R. A. Org. Lett. 2013, 15,
illustrated by the subsequent conversion of C−Br bonds into
C−C bonds via cross-coupling reactions following the
cyanoborhydride-promoted arylation reaction.
(13) Zheng, X.; Yang, L.; Du, W.; Ding, A.; Guo, H. Chem.Asian J.
2014, 9, 439.
(14) (a) Ryu, I.; Uehara, S.; Hirao, H.; Fukuyama, T. Org. Lett. 2008,
10, 1005. (b) Kobayashi, S.; Kawamoto, T.; Uehara, S.; Fukuyama, T.;
Ryu, I. Org. Lett. 2010, 12, 1548. (c) Kawamoto, T.; Fukuyama, T.;
Ryu, I. J. Am. Chem. Soc. 2012, 134, 875. (d) Kawamoto, T.; Ryu, I.
Chimia 2012, 66, 372. (e) Kawamoto, T.; Okada, T.; Curran, D. P.;
Ryu, I. Org. Lett. 2013, 15, 2144. (f) Fukuyama, T.; Kawamoto, T.;
Kobayashi, M.; Ryu, I. Beilstein J. Org. Chem. 2013, 9, 1791.
(15) For a review on NHC-borane, see: Curran, D. P.; Solovyev, A.;
ASSOCIATED CONTENT
* Supporting Information
Detailed experimental procedures and spectroscopic data. This
material is available free of charge via the Internet at http://
■
S
AUTHOR INFORMATION
Corresponding Author
Makhlouf Brahmi, M.; Fensterbank, L.; Malacria, M.; Laco
Chem., Int. Ed. 2011, 50, 10294.
̂
te, E. Angew.
■
(16) Kharasch also observed that more reduction product was
obtained when degassed conditions were used. The role of HI is
suggested for the reduction. See ref 2c.
Notes
(17) The reaction of 1a and benzene with AIBN in the presence of
Bu4NBH3CN at 90 °C gave the arylation product (9%) together with
an increased amount of anisole (21%).
(18) (a) Davies, D. I.; Hey, D. H.; Summers, B. J. Chem. Soc., C 1970,
2653. (b) Davies, D. I.; Hey, D. H.; Summers, B. J. Chem. Soc., C 1971,
2681.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas from the MEXT and the JSPS.
T.K. acknowledges the Research Fellowship of the JSPS for
Young Scientists.
(19) See the Supporting Information.
(20) It should be noted that no further reaction was observed when
the light was turned off (Supporting Information), which suggested
that this arylation reaction has poor chain propagation.
(21) The rate constant for hydrogen abstraction by oxygen from
cyclohexadienyl radical is estimated to be 1.6 × 109 M−1 s−1 at 27 °C
in benzene; see: Maillard, B.; Ingold, K. U.; Scaiano, J. C. J. Am. Chem.
Soc. 1983, 105, 5095.
REFERENCES
■
(1) (a) Mohlau, R.; Berger, R. Chem. Ber. 1893, 26, 1994.
̈
(b) Gomberg, M.; Bachmann, W. E. J. Am. Chem. Soc. 1924, 46,
2339. (c) Hey, D. H.; Walker, E. W. J. Chem. Soc. 1948, 2213.
(d) Fields, E. K.; Meyerson, S. J. Org. Chem. 1968, 33, 4487.
(2) (a) Wolf, W.; Kharasch, N. J. Org. Chem. 1961, 26, 283. (b) Wolf,
W.; Kharasch, N. J. Org. Chem. 1965, 30, 2493. (c) Kharasch, N.;
Sharma, R. K. Chem. Commun. 1966, 106.
(3) For mechanistic insight for the Bu3SnH-mediated radical
arylation reaction, see: (a) Beckwith, A. L. J.; Bowry, V. W.;
Bowman, W. R.; Mann, E.; Parr, J.; Storey, J. M. D. Angew. Chem.,
Int. Ed. 2004, 43, 95. For the related arylation with benzeneselenol as
a catalyst, see: (b) Crich, D.; Hwang, J.-T. J. Org. Chem. 1998, 63,
2765.
(4) For (Me3Si)3SiH-mediated radical arylation reaction, see:
(a) Martínez-Barrasa, V.; García de Viedma, A.; Burgos, C.; Alvarez-
́
́
Builla, J. Org. Lett. 2000, 2, 3933. (b) Nunez, A.; Sanchez, A.; Burgos,
̃
C.; Alvarez-Builla, J. Tetrahedron 2004, 60, 6217. (c) Curran, D. P.;
Keller, A. I. J. Am. Chem. Soc. 2006, 128, 13706.
(5) Yanagisawa, S.; Ueda, K.; Taniguchi, T.; Itami, K. Org. Lett. 2008,
10, 4673.
(6) Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.;
Wang, H.; Kwong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 16737.
(7) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.; Lu, X.-Y.; Huang,
K.; Zheng, S.-F.; Li, B.-J.; Shi, Z.-J. Nat. Chem. 2010, 2, 1044.
(8) (a) Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. J. Am.
Chem. Soc. 2010, 132, 15537. (b) Shirakawa, E.; Hayashi, T. Chem.
Lett. 2012, 41, 130.
(9) For an excellent commentary, see: Studer, A.; Curran, D. P.
Angew. Chem., Int. Ed. 2011, 50, 5018.
(10) For examples of base-promoted HAS reactions, see: (a) Qiu, Y.;
Liu, Y.; Yang, K.; Hong, W.; Li, Z.; Wang, Z.; Yao, Z.; Jiang, S. Org.
Lett. 2011, 13, 3556. (b) Yong, G.-P.; She, W.-L.; Zhang, Y.-M.; Li, Y.-
Z. Chem. Commun. 2011, 47, 11766. (c) Chen, W.-C.; Hsu, Y.-C.;
Shih, W.-C.; Lee, C.-Y.; Chuang, W.-H.; Tsai, Y.-F.; Chen, P. P.-Y.;
Ong, T.-G. Chem. Commun. 2012, 48, 6702. (d) Tanimoro, K.; Ueno,
M.; Takeda, K.; Kirihata, M.; Tanimori, S. J. Org. Chem. 2012, 77,
7844. (e) Liu, H.; Yin, B.; Gao, Z.; Li, Y.; Jiang, H. Chem. Commun.
2012, 48, 2033. (f) Zhao, H.; Shen, J.; Guo, J.; Ye, R.; Zeng, H. Chem.
Commun. 2013, 49, 2323. (g) Liu, W.; Tian, F.; Wang, X.; Yu, H.; Bi,
Y. Chem. Commun. 2013, 49, 2983.
(11) Dewanji, A.; Murarka, S.; Curran, D. P.; Studer, A. Org. Lett.
2013, 15, 6102.
2113
dx.doi.org/10.1021/ol500614q | Org. Lett. 2014, 16, 2111−2113