10.1002/anie.201906815
Angewandte Chemie International Edition
COMMUNICATION
in the oxidative addition complex is rapid and irreversible. In
either scenario, the fact that the enol triflate is irreversibly
consumed enables the reaction to proceed in good yield to the
respective alkenyl halides. This is in contrast to Ni-catalyzed
halide exchange reactions, which are thermodynamically
driven equilibrium processes.15b For example, after 2 h, an
85:15 mixture of 25-Br:25-I is obtained for both the Ni-
catalyzed reactions of 25-Br with LiI, or 25-I with LiBr.20
In conclusion, a mild Ni-catalyzed halogenation of alkenyl
triflates has been developed. By modifying the halide salt,
alkenyl iodides, bromides, or chlorides can be obtained using
a simple, inexpensive catalyst system. These reactions
proceed at room temperature, afford the alkenyl halides in
good to excellent yields, and exhibit good functional group
tolerance.
We thank the following Caltech staff for their help: Dr. Scott
Virgil and the Caltech Center for Catalysis and Chemical
Synthesis for access to experimental and analytical
equipment; Dr. Mona Shahgholi and Naseem Torian for
assistance with mass spectrometry measurements; and Dr.
Paul Oyala for assistance with EPR experiments. We also
thank Jordan C. Beck for assistance in the preparation of
alkenyl triflates 1e and 1k. Fellowship support was provided by
the National Science Foundation (graduate research
fellowship to J. L. H. and K. E. P, Grant No. DGE-1144469). S.
E. R. is a Heritage Medical Research Institute Investigator.
Financial support from the NIH (R35GM118191-01) is
gratefully acknowledged.
Keywords: nickel • halogenation • enol triflates • catalysis •
alkenyl halides
Acknowledgements
1 (a) Metal-catalyzed Cross-Coupling Reactions; De Meijer, A., Diederich, F.,
Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: 2004; Vols. 1 & 2. (b) K.
C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem., Int. Ed. 2005,
44, 4442.
substrates, and alkenyl chlorides and bromides were not prepared. A.
G. Martinez, R. M Alvarez, A. G. Fraile, L. R. Subramanian, M.
Hanack, Synthesis 1986, 3, 222.
13 (a) E. Shirakawa, Y. Imazaki, T. Hayashi, Chem. Commun. 2009, 5088.
(b) E. Imazaki, E. Shirakawa, R. Ueno, T. Hayashi, J. Am. Chem. Soc.
2012, 134, 14760.
14 (a) A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2014, 136, 14365.
(b) N. Suzuki, J. L. Hofstra, K. E. Poremba, S. E. Reisman, Org. Lett.
2017, 19, 2150.
2 M. Schlosser, Ed.; John Wiley & Sons, Inc.: 2013.
3 (a) G. W. Gribble, Springer-Verlag: Wien, Austria, 1996. (b) G. W. Gribble,
Springer-Verlag: Wien, Austria, 2010. (c) G. W. Gribble, Mar. Drugs.
2015, 13, 4004.
4 (a) D. W. Hart, T. F. Blackburn, J. Schwartz, J. Am. Chem. Soc. 1975, 97,
679. (b) H. C. Brown, C. Subrahmanyam, T. Hamaoka, N. Ravindran,
D. H. Bowman, S. Misumi, M. K. Unni, V. Smayaji, N. G. Bhat, J. Org.
Chem. 1989, 54, 6068. (c) F. Gao, A. H. Hoveyda, J. Am. Chem. Soc.
2010, 132, 10961. (d) M. R. Uehling, R. P. Rucker, G. Lalic, J. Am.
Chem. Soc. 2014, 136, 8799. (e) J. Derosa, A. L. Cantu, M. N.
Boulous, M. L. O’Duill, J. L. Turnbull, Z. Liu, D. M. De La Torre, K. M.
Engle, J. Am. Chem. Soc. 2017, 139, 5183.
15 (a) K. Takagi, N. Hayama, T. Okamoto, Chem. Lett. 1978, 191. (b) T. T.
Tsou, J. K. Kochi, J. Org. Chem. 1980, 45, 1930.
16 (a) K. Takagi, N. Hayama, S. Inokawa, Chem. Lett. 1978, 1435. (b) M. C.
J. M. Hooijdonk, T. H. A. Peters, S. F. Vasilevsky, L. Brandsma, Syn.
Commun. 1994, 24, 1261. For reviews, see: (c) D. A. Petrone, J. Ye,
M. Lautens, Chem. Rev. 2016, 116, 8003. (d) G. Evano, A. Nitelet,
P. Thilmany, D. F. Dewez, Front. Chem. 2018, 6:114.
5 (a) K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408. (b)
17 (a) J. E. Milne, K. Jarowicki, P. J. Kocienski, Synlett, 2002, 4, 607. (b) The
authors note that chlorination and iodination is also feasible, but no
yields are reported. Application of these conditions to substrate 1a
provided products 2a, 2b, and 2c in <10% yield. See the Supporting
Information.
G. Stork, K. Zhao, Tetrahedron Lett. 1989, 30, 2173.
6 (a) D. H. R. Barton, R. E. O’Brien, S. Sternhell, J. Chem. Soc. 1962, 470.
Modified Barton procedure: (b) M. E. Furrow, A. G. Myers, J. Am.
Chem. Soc. 2004, 126, 5436. (c) D. P. Ojha, K. R. Prabhu, Org. Lett.
2015, 17, 18.
18
A Ni-catalyzed trifluoromethylthiolation of alkenyl triflates was recently
7 Alkenyl bromides and chlorides can be prepared from ketones using in situ
generated P(V) reagents. However, ketones bearing multiple
enolizable positions or strained ring systems afford mixtures of
isomers: A. Spaggiari, D. Vaccari, P. Davoli, G. Torre, F. Prati, J. Org.
Chem. 2007, 72, 2216.
reported: A. Dürr, G. Yin, I. Kalvet, F. Napoly, F. Schoenebeck, Chem.
Sci. 2016, 7, 1076. Use of an enol nonaflate in place of the enol triflate
improved the yield for one example in the above report.
19 J. L. Hofstra, A. H. Cherney, C. M. Ordner, S. E. Reisman, J. Am. Chem.
Soc. 2018, 140, 139.
8
The trisilylhydrazones can be converted directly to the corresponding
20 See Supporting Information.
21
alkenyllithium reagents. (a) J. E. Stemke, A. R. Chamberlin, F. T.
Bond, Tetrahedron Lett. 1976, 34, 2947. (b) A. R. Chamberlin, J. E.
Stemke, F. T. Bond, J. Org. Chem. 1978, 43, 147. For a review, see:
(c) R. M. Adlington, A. G. M. Barrett, Acc. Chem. Res. 1983, 16, 55.
9 For a discussion of the challenges associated with hydrazone synthesis,
see ref 5b, and references found therein.
10 For a recent example of this sequence in total synthesis, see: A. D. Huters,
K. W. Quasdorf, E. D. Styduhar, N. K. Garg, J. Am. Chem. Soc. 2011,
133, 15797.
Zn(II) inhibition of Co and Ni mediated reactions has recently been
reported. (a) X. Zhang and A. McNally, ACS Catal. 2019, 9, 4862. (b)
L. Huang, L. K. G. Ackerman, K. Kang, A. M. Parsons, D. J. Weix, J.
Am. Chem. Soc. 2019, 141, 10978.
22 A XantphosNi(Br)•ZnBr2 adduct has recently been isolated from reduction
of the corresponding Ni(II) complex with Zn, demonstrating that Zn
salts can alter the Ni speciation. J. Dicciani, C. T. Hu, T. Diao, Angew.
Chem. Int., Int. Ed. 2019, in press. doi: 10.1002/ange.201906005
23 DMAP is used as an additive in aryl and alkenyl cyanation reactions using
Zn(CN)2 (a) X. Zhang, A. Xia, H. Chen, Y. Liu, Org. Lett. 2017, 19,
2118. (b) Y. Gan, G. Wang, X. Xie, Y. Liu, J. Org. Chem. 2018, 83,
14036.
11 (a) X. Shen, A. M. Hyde, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132,
14076. (b) J. Pan, X. Wang, Y. Zhang, S. L. Buchwald, Org. Lett.
2011, 13, 4974.
12
The conversion of enol triflates to alkenyl iodides using anhydrous
24 Reduction was observed in up to equimolar amounts with respect to Ni
loading; the amount of reduction observed was also dependent on
substrate and reaction time. It is possible that the reduction product
magnesium iodide and triethylamine has been reported; however,
forcing conditions were required, the scope was limited to four
This article is protected by copyright. All rights reserved.