Organic Letters
Letter
2006, 45, 6360. Asymmetric addition of arylboronic acids to imino
esters: Beenen, M. A.; Weix, D. J.; Ellman, J. A. J. Am. Chem. Soc. 2006,
128, 6304. Dai, H. X.; Yang, M.; Lu, X. Y. Adv. Synth. Catal. 2008, 350,
249. Asymmetric N−H insertion: Lee, E. C.; Fu, G. C. J. Am. Chem. Soc.
2007, 129, 12066. Xu, B.; Zhu, S.-F.; Xie, X.-L.; Shen, J.-J.; Zhou, Q.-L.
Angew. Chem., Int. Ed. 2011, 50, 11483. Asymmetric Strecker: Zuend, S.
J.; Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N. Nature 2009, 461,
968.
(6) Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465, 1027.
Shackleford, J. P.; Shen, B.; Johnston, J. N. Proc. Natl. Acad. Sci. U.S.A.
2012, 109, 44. Leighty, M. W.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc.
2012, 134, 15233.
particular note is the tolerance of the Fmoc-protected donor to
the basic reaction conditions.
In summary, we have discovered that N-TMS imines are
effective electrophiles in the BAM-catalyzed enantioselective
addition of bromo nitromethane and that the intermediate N-
TMS adduct can be acylated in situ. This provides a range of
adducts that can be used in Umpolung amide synthesis,
delivering the amino acid derivative, homologated by an aryl
glycine, with high diastereomeric purity. In some cases, such as
Fmoc-protected 10e, the product can be prepared by either
pathway via B or C (Figure 1) with similarly high
enantioselection.24 However, the low yield observed in the
former case further emphasizes the practical value of the pathway
through C. In other comparisons, such as the acyl-protected 10a,
the increased reactivity of the acyl imine intermediate leads to
poor enantioselection and yield. The development of N-TMS
imines as substrates in the enantioselective synthesis of amides
and peptides both decreases the length from aryl aldehyde to
peptide to three steps and broadens the nitrogen substituent
choices, including Fmoc protection without extensive redevelop-
ment of the enantioselective reaction for each case. In this way,
silyl amines C are Rosetta Stones for α-amino amide synthesis.
(7) Petrini, M.; Torregiani, E. Synthesis 2007, 2007, 159.
́ ́
(8) Bunkoczi, G.; Vertesy, L.; Sheldrick, G. M. Angew. Chem., Int. Ed.
2005, 44, 1340. Vertesy, L.; Aretz, W.; Knauf, M.; Markus, A.; Vogel, M.;
Wink, J. J. Antibiot. 1999, 52, 374.
(9) Barany, M. J.; Hammer, R. P.; Merrifield, R. B.; Barany, G. J. Am.
Chem. Soc. 2004, 127, 508. Birkofer, L.; Ritter, A. Angew. Chem., Int. Ed.
1965, 4, 417. Kricheldorf, H. R. Justus Liebigs Ann. Chem. 1972, 763, 17.
Mironov, V. F.; Sheludyakov, V. D.; Kozyukov, V. P. Russ. Chem. Rev.
1979, 48, 473.
(10) Panunzio, M.; Zarantonello, P. Org. Process Res. Dev. 1998, 2, 49.
(11) Itsuno, S.; Watanabe, K.; El-Shehawy, A. A. Adv. Synth. Catal.
2001, 343, 89. Itsuno, S.; Watanabe, K.; Ito, K.; ElShehawy, A. A.;
Sarhan, A. A. Angew. Chem., Int. Ed. 1997, 36, 109. Itsuno, S.; Watanabe,
K.; Matsumoto, T.; Kuroda, S.; Yokoi, A.; El-Shehawy, A. J. Chem. Soc.,
Perkin Trans. 1 1999, 2011. El-Shehawy, A. A.; Abdelaal, M. Y.;
Watanabe, K.; Ito, K.; Itsuno, S. Tetrahedron: Asymmetry 1997, 8, 1731.
Itsuno, S.; Sasaki, M.; Kuroda, S.; Ito, K. Tetrahedron: Asymmetry 1995,
6, 1507.
(12) However, Brown’s subsequent work revealed the importance of
water in this reaction, suggesting that addition occurs after hydrolytic
cleavage of the silyl protecting group. Therefore, enantioselective
addition occurs to the free aldimine/borane complex, not to the putitive
N-TMS imine: Chen, G. M.; Ramachandran, P. V.; Brown, H. C. Angew.
Chem., Int. Ed. 1999, 38, 825. Chen, G. M.; Brown, H. C. J. Am. Chem.
Soc. 2000, 122, 4217.
ASSOCIATED CONTENT
* Supporting Information
■
S
Complete preparatory and analytical data for all new compounds.
This material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
Notes
(13) Bew, S. P.; Fairhurst, S. A.; Hughes, D. L.; Legentil, L.; Liddle, J.;
Pesce, P.; Nigudkar, S.; Wilson, M. A. Org. Lett. 2009, 11, 4552.
(14) Hong, K.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 9252.
(15) Cainelli, G.; Panunzio, M.; Andreoli, P.; Martelli, G.; Spunta, G.;
Giacomini, D.; Bandini, E. Pure Appl. Chem. 1990, 62, 605.
(16) Vidal, J.; Damestoy, S.; Guy, L.; Hannachi, J. C.; Aubry, A.; Collet,
A. Chem.Eur. J. 1997, 3, 1691.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Unrestricted support from Amgen and the ACS Division of
Organic Chemistry (graduate fellowship to D.M.M.) is gratefully
acknowledged, as is partial support by the NIH (GM 063557
(exploratory) and GM 084333 (catalyst development)).
(17) Davis, T. A.; Wilt, J. C.; Johnston, J. N. J. Am. Chem. Soc. 2010,
132, 2880.
(18) Davis, T. A.; Johnston, J. N. Chem. Sci. 2011, 2, 1076.
(19) Observation of this intermediate indicates that enantioselective
addition does occur to the N-TMS imine and that the silyl group is not
lost until acid chloride quench. See the Supporting Information for
spectroscopic details.
(20) For similar observations with an indolenine electrophile, see:
Dobish, M. C.; Johnston, J. N. Org. Lett. 2010, 12, 5744.
(21) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc.
2004, 126, 3418.
(22) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
12672. Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048.
(23) The absolute configuration was confirmed by quenching the
intermediate pCl-TMS-adduct with Boc2O to form the N-Boc-protected
α-bromo nitroamine, a known compound. See the Supporting
Information for details.
(24) To the best of our knowledge, only one enantioselective synthesis
of α-amino acids has shown some degree of tolerance to Fmoc
protection directly (two substrates, hydrogenation to phenylalanine
REFERENCES
■
(1) Review: Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
(2) Erickson, G. W. J. Pept. Sci. 2004, 10, 101. Liu, S. W.; Lu, H.; Niu, J.;
Xu, Y. J.; Wu, S. G.; Jiang, S. B. J. Biol. Chem. 2005, 280, 11259. Thayer,
A. M. Chem. Eng. News 2011, 89, 21.
(3) Peptides as Drugs: Discovery and Development; Groner, B., Ed.;
Wiley-VHC: Weinheim, 2009. Bray, B. L. Nat. Rev. Drug Discov. 2003, 2,
587.
(4) For a review of emerging methods in amide and peptide synthesis,
see: Bode, J. W. Curr. Opin. Drug Discovery Dev. 2006, 9, 765. Recent
examples: Cassidy, M. P.; Raushel, J.; Fokin, V. V. Angew. Chem., Int. Ed.
2006, 45, 3154. Yoo, W.-J.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 13064.
Chan, W.-K.; Ho, C.-M.; Wong, M.-K.; Che, C.-M. J. Am. Chem. Soc.
2006, 128, 14796. Gunanathan, C.; Ben-David, Y.; Milstein, D. Science
2007, 317, 790. Nordstrom, L. U.; Vogt, H.; Madsen, R. J. Am. Chem.
Soc. 2008, 130, 17672. Gao, J.; Wang, G.-W. J. Org. Chem. 2008, 73,
2955. Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446. Rao, Y.;
Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2009, 131, 12924.
(5) Recent developments in the enantioselective synthesis of non-
natural amino acids: Sharpless aminohydroxylation: Reddy, K. L.;
Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 1207. Asymmetric
hydrogenation: Shang, G.; Yang, Q.; Zhang, X. M. Angew. Chem., Int. Ed.
́ ́
derivatives): Fernandez-Perez, H.; Donald, S. M. A.; Munslow, I. J.;
Benet-Buchholz, J.; Maseras, F.; Vidal-Ferran, A. Chem.Eur. J. 2010,
16, 6495.
D
dx.doi.org/10.1021/ol501297a | Org. Lett. XXXX, XXX, XXX−XXX