Page 7 of 8
Journal of the American Chemical Society
In conclusion, experimental 13C KIEs and theoretical studies
provide high-resolution picture of the enantioselectivity-
determining transition state of the Michael addition of glycinate
imines to acrylate catalyzed by chiral 2,3-
Corresponding Author
1
2
3
4
5
6
7
8
a
a
Notes
bis(dicyclohexylamino) cyclopropenimine catalyst. On the basis
of these studies, we have developed a template for predicting
enantioselectivity in reactions catalyzed by 1. An unusual intra-
molecular CH…O interaction has been identified as a key element
in transition state organization. Transition structures where H-
bond donors on the catalyst stabilize both reactants via H-bonding
are favored. Ultimately, enantioselection results from the best
network of H-bonding interactions, geometry of the enolate and
other stabilizing interactions. The use of this information for the
rational design of novel cyclopropenimine-based Brønsted base
catalysts will be reported in due course.
The authors declare no competing financial interest.
Author Contributions
JSB and GSS contributed equally to this work.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
n ACKNOWLEDGMENTS
MJV acknowledges support from startup funding at Bing-
hamton University from the SUNY Research Foundation and
the National Science Foundation through XSEDE resources
provided by the XSEDE Science Gateways program. THL
acknowledges financial support from NIH NIGMS
(R01 GM102611) and an Ely Lilly Grantee Award. WDW
acknowledges support from NIH NIGMS (R01 GM094478). JSB
is grateful for NSF and NDSEG doctoral fellowships. We thank
the Leighton group (Columbia University) for use of their in-
strumentation.
n ASSOCIATED CONTENT
Supporting Information. Experimental and computational
details and discussions, NMR spectra and integrations, rele-
vant pdb files, absolute energies and the coordinates of the
atoms in all the molecules whose geometries were optimized..
n AUTHOR INFORMATION
n REFERENCES
(1) Bandar, J.; Lambert, T. H. J. Am. Chem. Soc. 2012, 134, 5552- 5555.
(2) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2013, 135, 11799-11802.
(3) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2014, Submitted (see Supporting Information for Review Only).
(4) Ishikawa, T.; Araki, Y.; Kumamoto, T.; Seki, H.; Fukuda, K.; Isobe, T. Chem. Comm. 2001, 245.
(5) Several catalytic enantioselective Brønsted base catalyzed reactions are currently being developed using 1 and related catalysts. 1 is available
as a salt from Sigma-Aldrich.
(6) Selected examples include (a) Beno, B. R.; Houk, K. N.; Singleton, D. A. J. Am. Chem. Soc. 1996, 118, 9984-9985. (b) Singleton, D. A.;
Merrigan, S. R.; Liu, J.; Houk, K. N.; J. Am. Chem. Soc. 1997, 119, 3385-3386. (c) DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.;
Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907-9908. (d) Keating, A. E.; Merrigan, S. R.; Singleton, D. A.;
Houk, K. N. J. Am. Chem. Soc. 1999, 121, 3933-3938. (e) Frantz, D. E.; Singleton, D. A. J. Am. Chem. Soc. 2000, 122, 3288-3295. (f) Zhu, H.;
Clemente, F. R.; Houk, K. N.; Meyer, M. P. J. Am. Chem. Soc. 2009, 131, 1632-1633. (g) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Org.
Chem. 2013, 78, 5142-5152.
(7) Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117, 9357-9358.
(8) (a) Frantz, D. E.; Singleton, D. A.; Snyder, J. P. J. Am. Chem. Soc. 1997, 119, 3385–3386. (b) Singleton, D. A.; Schulmeier, B. E. J. Am.
Chem. Soc. 1999, 121, 9313–9317.
(9) We chose this approach because re-isolation of 3b from the product mixture could be accomplished relatively easily unlike 2, which is prone
to hydrolysis during chromatography.
(10) Full experimental details of the KIE measurements are provided in the Supporting Information.
(11) This computed geometry of the protonated catalyst is consistent with the crystal structure of the protonated catalyst complexed to a chloride
ion and a water molecule. See Ref. 1 for published crystal structure.
(12) (a) Svensson, M.; Humbel, S.; Morokuma, K. J. Chem. Phys. 1996, 105, 3654-3661. (b) Vreven, T.; Morokuma, K. J. Comput. Chem.
2000, 21, 1419-1432. (c) Dapprich, S.; Koma´romi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. 1999, 461, 1-21.
(13) Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.;
Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnen-
berg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Nor-
mand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross,
J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman,
J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
(14) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(15) Usually, detailed computational investigations of such large systems are carried out using hybrid(DFT:semi-empirical) methods such as
ONIOM followed by single-point energy calculations to obtain the best-possible energy. These methods are significantly more error-prone than a
full-DFT treatment.
(16) This observation has been validated experimentally – 2-cyclopentenone (s-trans) is found to be a poor Michael acceptor while 2-
methylenecyclopentanone (s-cis) is an excellent acceptor.
ACS Paragon Plus Environment