Angewandte
Communications
Chemie
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (DFG) for
funding (Ju295/8-1, Si868/6-1, SFB992: A04 & Z02), K.
Schmidtkunz for assistance with cell culture experiments,
and E. Jung for the preparation of the graphic for the Table of
Contents. J.O. was supported by the Hungarian National
Scientific Research Fund Grants OTKA T-101039 and T-
112144.
Figure 4. The SirReal probe (11) captures Sirt2 out of HL60 lysates.
a) Western blot analysis of the SirReal probe bound to Dynabeads
MyOne Streptavidin T1 after incubation with HL60 lysates. Sirt1 and
Sirt2 were detected with isotype-specific antibodies (for uncropped
blots see Figure S7d,e). b) Quantification of the Western blot analysis.
Affinity pull-down experiments lead to a significant enrichment of Sirt2
(n=3). Statistics (t-test): ** pꢀ0.005
Keywords: deacylases · drug design · protein modifications ·
proteomics · sirtuins
How to cite: Angew. Chem. Int. Ed. 2016, 55, 2252–2256
Angew. Chem. 2016, 128, 2293–2297
mixture of the three mentioned proteins (Figure S7a),
mixtures of E. coli lysates where Sirt1 or Sirt2 are overex-
pressed (Figure S7b,c), and native HL60 lysates (Figure 4 and
see Figure S7d,e). The specificity of the pull-down was shown
by blocking the Sirt2 enrichment effectively with either biotin
or SirReal2 (2, see Figure S7a). These results underline the
isotype selectivity, robustness, and broad applicability of our
SirReal probe for affinity purification and pull-down experi-
ments.
[1] a) S. Imai, C. M. Armstrong, M. Kaeberlein, L. Guarente, Nature
2000, 403, 795 – 800; b) A. Vaquero, M. B. Scher, D. H. Lee, A.
Sutton, H. L. Cheng, F. W. Alt, L. Serrano, R. Sternglanz, D.
[2] H. Vaziri, S. K. Dessain, E. N. Eaton, S. I. Imai, R. A. Frye, T. K.
[3] F. Yeung, J. E. Hoberg, C. S. Ramsey, M. D. Keller, D. R. Jones,
[4] B. J. North, B. L. Marshall, M. T. Borra, J. M. Denu, E. Verdin,
In this study, we reported the structure-based develop-
ment of an affinity probe for Sirt2. The design of the probe
was guided by the structural insights gained by Sirt2–SirReal
cocrystal structures and rationalized by molecular docking as
well as by the synthesis of druglike probe mimics that extend
into the acyllysine tunnel, as shown by X-ray crystallography.
These inhibitors displayed an improved potency, enhanced
water solubility, and improved efficacy in target engagement
compared to the previous lead structure SirReal2. This has
important implications for further drug discovery in the field
of sirtuin inhibitors. Our new SirReal probe retains the
potency and isotype selectivity of the druglike inhibitors and
is able to selectively bind to Sirt2 in different matrices. Based
on our biophysical data, the key to its strong binding is the
slow dissociation rate of the inhibitor–enzyme complex. Slow
dissociation rates have been proposed recently as a key step
for drug design towards optimized cellular activity[22] and, for
the first time, we have exploited this principle systematically
in the structure-guided development of a chemoaffinity
probe. This approach lays the foundation for widespread
applications such as FBDD, kinetic measurements, and use in
inhibitor characterization. Furthermore, our new SirReal
probe opens up new avenues to dissect the role of Sirt2 in
biology and medicine. Ongoing studies are directed at
detecting novel Sirt2 interaction partners by chemoproteo-
mics,[26] and assessing genome-wide binding profiles of Sirt2
by using Chem-seq.[27] Our SirReal probe, therefore, repre-
sents a highly versatile tool that provides excellent isotype
selectivity and high affinity to the target enzyme Sirt2, and
can now be used to interrogate Sirt2 biology and druggability
on a new level.
[5] B. J. North, M. A. Rosenberg, K. B. Jeganathan, A. V. Hafner, S.
Michan, J. Dai, D. J. Baker, Y. Cen, L. E. Wu, A. A. Sauve, J. M.
van Deursen, A. Rosenzweig, D. A. Sinclair, EMBO J. 2014, 33,
1438 – 1453.
[7] J. Du, Y. Zhou, X. Su, J. J. Yu, S. Khan, H. Jiang, J. Kim, J. Woo,
J. H. Kim, B. H. Choi, B. He, W. Chen, S. Zhang, R. A. Cerione,
[10] R. M. de Oliveira, J. Sarkander, A. G. Kazantsev, T. F. Outeiro,
Front. Pharmacol. 2012, 3, 82.
[11] B. Beirowski, J. Gustin, S. M. Armour, H. Yamamoto, A. Viader,
B. J. North, S. Michan, R. H. Baloh, J. P. Golden, R. E. Schmidt,
[12] T. F. Pais, E. M. Szego, O. Marques, L. Miller-Fleming, P. Antas,
P. Guerreiro, R. M. de Oliveira, B. Kasapoglu, T. F. Outeiro,
[13] a) H. S. Kim, A. Vassilopoulos, R. H. Wang, T. Lahusen, Z. Xiao,
X. Xu, C. Li, T. D. Veenstra, B. Li, H. Yu, J. Ji, X. W. Wang, S. H.
499; b) L. Serrano, P. Martinez-Redondo, A. Marazuela-Duque,
B. N. Vazquez, S. J. Dooley, P. Voigt, D. B. Beck, N. Kane-
Goldsmith, Q. Tong, R. M. Rabanal, D. Fondevila, P. Munoz, M.
[14] a) M. H. Yang, G. Laurent, A. S. Bause, R. Spang, N. German,
1077; b) P. Y. Liu, N. Xu, A. Malyukova, C. J. Scarlett, Y. T. Sun,
X. D. Zhang, D. Ling, S. P. Su, C. Nelson, D. K. Chang, J. Koach,
A. E. Tee, M. Haber, M. D. Norris, C. Toon, I. Rooman, C. Xue,
B. B. Cheung, S. Kumar, G. M. Marshall, A. V. Biankin, T. Liu,
[15] H. A. Eskandarian, F. Impens, M. A. Nahori, G. Soubigou, J. Y.
Angew. Chem. Int. Ed. 2016, 55, 2252 –2256
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2255