Page 5 of 7
Journal Name
Catalysis Science & Technology
ARTICLE
Lett., 2013, 15, 1942; (c) H. Firouzabadi and Z. Mostafavipoor, Bull.
Chem. Soc. Jpn., 1983, 56, 914; (d) E. Baer and A. L. Tosoni, J. Am.
Aniline is adsorbed on the oxygen defect sites on MnO2. Then, single
electron transfer (SET) from aniline to the oxygen defect sites follows,
creating the aniline radical cation and reducing the Mn4+ to
Mn3+/Mn2+ with the activation of Mn–O bond. This aniline radical
cation is coupled with the surrounding neutral aniline to form a three-
electron sigma bond as reported.24 Further electron transfer and the
abstraction of two hydrogens by the activated oxygen on MnO2
surface forms hydrazine. Hydrazine is a very active intermediate. We
and other researchers failed to detect it.3a, 3c Fast oxydehydrogenation
of hydrazine generates azobenzene. The reduced OMS-2 is re-
oxidized by oxygen, ready for next catalytic cycle. Azobenzene is also
possible formed from the reaction of nitrosobenzene and aniline.1e But
we did not detected nitrosobenzene intermediate.
Sahamieh, Acta Chim. Slov., 2007, 54, 647; (f) Goldstei.Sl and E.
DOI: 10.1039/C5CY01015B
Mcnelis, J. Org. Chem., 1973, 38, 183; (g) A. Rezaeifard, M. Jafarpour,
S. Rayati and R. Shariati, Dyes Pigments, 2009, 80, 80; (h) M. H. Habibi,
S. Tangestaninejad and V. Mirkhani, J. Chem. Res., 1998, 648; (i) Y.
Takeda, S. Okumura and S. Minakata, Angew. Chem. Int. Ed., 2012, 51,
7804; (j) S. Okumura, C. H. Lin, Y. Takeda and S. Minakata, J. Org.
Chem., 2013, 78, 12090; (k) L. Lekha, K. K. Raja, G. Rajagopal and D.
Easwaramoorthy, J. Organomet. Chem., 2014, 753, 72; (l) X. Y. Wang,
Y. L. Wang, J. P. Li, Z. F. Duan and Z. Y. Zhang, Synth. Commun.,
1999, 29, 2271; (m) V. Mirkhani, S. Tangestaninejad, M. Moghadam and
M. Moghbel, Biorg. Med. Chem., 2004, 12, 4673; (n) R. Goyal, D.
Dumbre, L. N. S. Konathala, M. Pandey and A. Bordoloi, Catal Sci
Technol, 2015, 5, 3632.
3 (a) A. Grirrane, A. Corma and H. Garcia, Science, 2008, 322, 1661; (b) S.
F. Cai, H. P. Rong, X. F. Yu, X. W. Liu, D. S. Wang, W. He and Y. D.
Li, ACS Catal., 2013, 3, 478; (c) C. Zhang and N. Jiao, Angew. Chem.
Int. Ed., 2010, 49, 6174; (d) W. C. Lu and C. J. Xi, Tetrahedron Lett.,
2008, 49, 4011; (e) J. Wang, J. Heb, C. Zhia, B. Luoa, X. Lia, Y. Pana,
X. Cao and H. Gu, RSC Adv., 2014, 4, 16607; (f) H. T. Nguyen, O.
Coulembier, K. Gheysen, J. C. Martins and P. Dubois, Macromolecules,
2012, 45, 9547; (g) K. Kinoshita, Bull. Chem. Soc. Jpn., 1959, 32, 780.
4 (a) F. A. Westerhaus, R. V. Jagadeesh, G. Wienhofer, M. M. Pohl, J.
Radnik, A. E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A.
Bruckner and M. Beller, Nature Chem., 2013, 5, 537; (b) R. M. Bullock,
Science, 2013, 342, 1054.
5 (a) C. K. King'ondu, N. Opembe, C. H. Chen, K. Ngala, H. Huang, A. Iyer,
H. F. Garces and S. L. Suib, Adv. Funct. Mater., 2011, 21, 312; (b) Q.
Zhang, X. D. Cheng, X. H. Feng, G. H. Qiu, W. F. Tan and F. Liu, J.
Mater. Chem., 2011, 21, 5223.
6 (a) R. N. Deguzman, Y. F. Shen, E. J. Neth, S. L. Suib, C. L. Oyoung, S.
Levine and J. M. Newsam, Chem. Mater., 1994, 6, 815; (b) Y. F. Shen,
R. P. Zerger, R. N. Deguzman, S. L. Suib, L. Mccurdy, D. I. Potter and
C. L. Oyoung, Science, 1993, 260, 511.
Scheme 2. Proposed reaction mechanism.
7 (a) S. Dharmarathna, C. K. King'ondu, L. Pahalagedara, C. H. Kuo, Y. S.
Zhang and S. L. Suib, Appl. Catal. B-Environ., 2014, 147, 124; (b) A.
Iyer, J. Del-Pilar, C. K. King'ondu, E. Kissel, H. F. Garces, H. Huang, A.
M. El-Sawy, P. K. Dutta and S. L. Suib, J. Phys. Chem. C, 2012, 116,
6474; (c) G. H. Qiu, H. Huang, S. Dharmarathna, E. Benbow, L. Stafford
and S. L. Suib, Chem. Mater., 2011, 23, 3892; (d) S. L. Suib, Acc. Chem.
Res., 2008, 41, 479.
8 K. Yamaguchi, Y. Wang and N. Mizuno, ChemCatChem, 2013, 5, 2835.
9 W. S. Chen, J. A. Kocal, T. A. Brandvold, M. L. Bricker, S. R. Bare, R. W.
Broach, N. Greenlay, K. Popp, J. T. Walenga, S. S. Yang and J. J. Low,
Catal. Today, 2009, 140, 157.
10 (a) Y. Q. Deng, T. Zhang, C. T. Au and S. F. Yin, Appl. Catal. A-Gen.,
2013, 467, 117; (b) M. Wang, C. Chen, Q. H. Zhang, Z. T. Du, Z. Zhang,
J. Gao and J. Xu, J. Chem. Technol. Biotechnol., 2010, 85, 283.
11 Y. Wang, K. Yamaguchi and N. Mizuno, Angew. Chem. Int. Ed., 2012,
51, 7250.
Conclusion
In summary, we have reported a highly active, selective and
recyclable manganese oxide catalyst in the oxidative coupling of
anilines for the synthesis of symmetric and unsymmetric azobenzenes.
This study will help understand heterogeneous catalysis of oxides and
may provide the useful reference for producing azobenzenes in a
green and economical way.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21422308, 21303183, 21233008), and
Dalian Excellent Youth Foundation (2014J11JH126).
12 Z. Zhang, F. Wang, M. Wang, S. Xu, H. Chen, C. Zhang and J. Xu, Green
Chem., 2014, 16, 2523.
13 R. Kumar, S. Sithambaram and S. L. Suib, J. Catal., 2009, 262, 304.
14 (a) F. S. Han, Chem. Soc. Rev., 2013, 42, 5270; (b) J. Bariwal and E. Van
der Eycken, Chem. Soc. Rev., 2013, 42, 9283.
15 M. Wang, F. Wang, J. P. Ma, M. R. Li, Z. Zhang, Y. H. Wang, X. C.
Zhang and J. Xu, Chem. Commun., 2014, 50, 292.
16 X. Creary, M. E. Mehrsheikhmohammadi and S. Mcdonald, J. Org.
Chem., 1987, 52, 3254.
Notes and references
a State Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of
Sciences, Dalian 116023 (China).
Electronic Supplementary Information (ESI) available: Catalyst
characterizations by XRD and electron microscopy, some catalytic results
1H-NMR spectra and the mass spectra of the products. See
17 S. Dharmarathna, C. K. King'ondu, W. Pedrick, L. Pahalagedara and S. L.
Suib, Chem. Mater., 2012, 24, 705.
DOI: 10.1039/b000000x/
1 (a) E. Merino, Chem. Soc. Rev., 2011, 40, 3835; (b) E. Drug and M. Gozin,
J. Am. Chem. Soc., 2007, 129, 13784; (c) Y. K. Lim, K. S. Lee and C. G.
Cho, Org. Lett., 2003, 5, 979; (d) Z. L. Zhu and J. H. Espenson, J. Org.
Chem., 1995, 60, 1326; (e) X. Liu, H. Q. Li, S. Ye, Y. M. Liu, H. Y. He
and Y. Cao, Angew. Chem. Int. Ed., 2014, 53, 7624; (f) S. S. Acharyya,
S. Ghosh and R. Bal, Acs Sustain Chem Eng, 2014, 2, 584; (g) S. Ghosh,
S. S. Acharyya, T. Sasaki and R. Bal, Green Chemistry, 2015, 17, 1867.
2 (a) H. C. Ma, W. F. Li, J. Wang, G. H. Xiao, Y. Gong, C. X. Qi, Y. P.
Feng, X. F. Li, Z. K. Bao, W. Cao, Q. S. Sun, C. Veaceslav, F. Wang and
Z. Q. Lei, Tetrahedron, 2012, 68, 8358; (b) Y. G. Zhu and Y. Shi, Org.
18 J. A. Dean, Lange's Handbook of Chemistry, McGraw Hill Company, ed.
15th, New york, America, 1998.
19 M. Kakazey, N. Ivanova, Y. Boldurev, S. Ivanov, G. Sokolsky, J. G.
Gonzalez-Rodriguez and M. Vlasova, J. Power Sources, 2003, 114, 170.
20 M. Kakazey, N. Ivanova, G. Sokolsky and J. G. Gonzalez-Rodriguez,
Electrochem. Solid-State Lett., 2001, 4, J1.
21 (a) J. T. Hou, Y. Z. Li, L. L. Liu, L. Ren and X. J. Zhao, J. Mater. Chem.
A, 2013, 1, 6736; (b) N. N. Opembe, C. K. King'ondu, A. E. Espinal, C.
H. Chen, E. K. Nyutu, V. M. Crisostomo and S. L. Suib, J. Phys. Chem.
C, 2010, 114, 14417.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1‐3 | 5