Angewandte
Chemie
(150 mV).[5h] For 3, two reversible one-electron couples were
observed for the oxidation (140 and 218 mV) and the
reduction (À1220 and À1315 mV) processes (see Supporting
information). A significant anodic shift was observed for the
reduction processes with respect to that of a monomeric
nickel(ii) complex of 1 (À1556 mV)[13] which corresponds to a
> 300 mV decrease in the HOMO–LUMO gap[14] of the
dimer 3.
In summary, compound 2 constitutes the first example of a
directly linked N-confused bis(porphyrin). Its surprisingly
facile synthesis makes 2 a potentially attractive building block
of novel molecular assemblies that contain covalently and
coordinatively linked subunits with peripheral nitrogen
donor-atom sites.
Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+ 44)1223-
336-033; or deposit@ccdc.cam.ac.uk).
3: A solution of 2 (30 mg, 0.022 mmol) in toluene (30 mL) was
mixed with a solution of nickel(ii) acetate tetrahydrate (50 mg) in
DMF (5 mL), and the mixture was heated at reflux under nitrogen for
1 h. The solvents were then removed, and the residue was purified by
flash chromatography through silica gel. The first green band eluted
with CH2Cl2 was collected. Recrystallization from hexane solution
(carried out under N2) yielded the desired complex 3 (20 mg, 63%).
1H NMR: (500 MHz, CD2Cl2, 233 K, TMS): d = 9.58 (s, 1H, 2-NH),
7.88 (d, 3JHH = 4.8 Hz, 1H; pyrrole), 7.79 (d, 3JHH = 5.0 Hz, 1H;
3
4
3
pyrrole), 7.75 (dd, JHH = 7.6 Hz, JHH = 1.8 Hz, 1H), 7.73 (d, JHH
=
5.3 Hz, 1H; pyrrole), 7.72 (dd, 3JHH = 7.6 Hz, 4JHH = 1.4 Hz, 1H), 7.65
(d, 3JHH = 5.0 Hz, 1H; pyrrole), 7.62 (dd, 3JHH = 7.7 Hz, 4JHH = 1.3 Hz,
1H), 7.56 (dd, 3JHH = 7.6 Hz, 4JHH = 1.4 Hz, 1H), 7.55 (dd, JHH
=
3
4
3
7.8 Hz, JHH = 1.6 Hz, 1H), 7.51 (d, JHH = 5.3 Hz, 1H; pyrrole), 7.50
(dd, 3JHH = 7.6 Hz, 4JHH = 1.4 Hz, 1H), 7.48 (d, 3JHH = 5.3 Hz, 1H;
pyrrole), 7.47 (dd, 3JHH = 7.8 Hz, 4JHH = 1.6 Hz, 1H), 7.41 (dd, 3JHH
=
7.5 Hz, 4JHH = 1.4 Hz, 1H), 7.35 (m, 2H), 7.33 (m, 2H), 7.29 (dd,
3JHH = 8.0 Hz, 4JHH = 1.1 Hz, 1H), 7.11 (d, 3JHH = 7.3 Hz), 6.55 (d,
3JHH = 7.1 Hz), 5.96 (d, 3JHH = 7.3 Hz), 2.52 (s, 3H), 2.49 (s, 3H), 2.43
(s, 3H), 1.33 (s, 3H); UV/Vis (CH2Cl2): lmax (loge) = 243 (sh), 368
(4.84), 431 (4.86), 483 (4.79), 625 (4.49), 860 nm (sh). ESI-MS: m/z:
1452.5 ([M+1]+); elemental analysis: calcd for C96H68N8Ni2: C 79.55,
H 4.70, N 7.73; found: C 79.35, H 4.90, N 7.54%.
Experimental Section
2: HBr (40% solution in acetic acid, 50 mL, 0.25 mmol) was added in
one portion to a solution of 1 (100 mg, 0.15 mmol) in toluene (30 mL).
A further aliquot of dichloromethane (5 mL) was added to enhance
the solubility of the generated porphyrin dication. The reaction
mixture was heated at reflux for 20 h, then the solvents were removed.
The residue was dissolved in benzene and was purified by chroma-
tography through basic Al2O3 (activity III). Decomposition products
and unconverted starting material 1 (recovered 21 mg) were eluted
with benzene, whereas the desired product 2 was eluted with CH2Cl2
Received: July 19, 2004
Keywords: dimerization · nickel · nitrogen heterocycles ·
and then recrystallized from dichloromethane/ethanol (49 mg, 49%).
.
1H NMR: (500 MHz, CDCl3, 233 K, TMS): d = 8.92 (dd, JHH
=
3
porphyrinoids · supramolecular chemistry
4
3
4.4 Hz, JHH = 1.3 Hz, 1H; pyrrole), 8.84 (d, JHH = 7.5 Hz, 1H) 8.61
3
3
(d, JHH = 4.5 Hz, 1H; pyrrole), 8.56 (d, JHH = 4.5 Hz, 1H; pyrrole),
3
4
3
8.51 (dd, JHH = 4.4 Hz, JHH = 1.0 Hz, 1H; pyrrole), 8.39 (dd, JHH
=
[1] a) M. G. H. Vicente, L. Jaquinod, K. M. Smith, Chem. Commun.
1999, 1771; b) A. Burrell, D. L. Officer, P. G. Plieger, D. C. W.
Reid, Chem. Rev. 2001, 101, 2751.
7.6 Hz, 4JHH = 1.3 Hz, 1H), 8.36 (d, 3JHH = 7.7 Hz, 1H), 8.24 (dd,
3JHH = 7.4 Hz, 4JHH = 1.3 Hz, 1H), 8.11 (dd, 3JHH = 4.4 Hz, JHH
=
4
1.0 Hz, 1H; pyrrole), 8.01 (dd, 3JHH = 7.4 Hz, 4JHH = 1.3 Hz, 1H),
7.83 (d, 3JHH = 8.1 Hz, 1H), 7.81 (dd, 3JHH = 8.0 Hz, 4JHH = 1.4 Hz,
1H), 7.76 (d, 3JHH = 7.6 Hz, 1H), 7.64 (m, 2H), 7.56 (m, 2H), 7.46 (d,
[2] a) M. R. Wasielewski, Chem. Rev. 1992, 92, 435; b) R. W.
Wagner, J. S. Lindsey, J. Am. Chem. Soc. 1994, 116, 9759; c) J.-
S. Hsiao, B. P. Krueger, R. W. Wagner, T. E. Johnson, J. K.
Delaney, D. C. Mauzerall, G. R. Fleming, J. S. Lindsey, D. F.
Bocian, R. J. Donohoe, J. Am. Chem. Soc. 1996, 118, 11181;
d) S. I. Yang, J. Seth, T. Balasubramanian, D. Kim, J. S. Lindsey,
D. Holten, D. F. Bocian, J. Am. Chem. Soc. 1999, 121, 4008.
[3] a) J. P. Collman, Inorg. Chem. 1997, 36, 5145; b) M. L. Merlau,
M. P. Mejia, S. B. T. Nguen, J. T. Hupp, Angew. Chem. 2001, 113,
4369; Angew. Chem. Int. Ed. 2001, 40, 4239.
3JHH = 7.6 Hz, 1H), 7.22 (dd, JHH = 7.4 Hz, JHH = 1.5 Hz, 1H), 5.33
3
4
3
3
(d, JHH = 7.5 Hz, 1H), 4.64 (d, JHH = 7.0 Hz, 1H), 2.80 (s, 3H), 2.71
(s, 3H), 2.69 (d, 3JHH = 7.6 Hz, 1H), 2.65 (s, 3H), À0.76 (s, 3H), À2.40
(s, 1H, NH), À2.64 (b, 1H, NH), À5.25 (b, 1H, 21-CH); UV/Vis
(CH2Cl2): lmax (loge) = 257 (4.74), 290 (4.76), 348 (sh), 399 (sh), 442
(sh), 459 (5.47), 565 (4.60), 595 (sh), 703 (sh), 758 nm (4.40); ESI-MS:
m/z: 1340.5 [MH+]; elemental analysis: calcd for C96H74N8C2H5OH: C
84.97, H 5.78, N 8.09; found: C 84.74, H 5.65, N 8.30%.
[4] a) H. Segawa, D. Machida, Y. Senshu, J. Nakazaki, K. Hirakawa,
F. Wu, Chem. Commun. 2002, 3032; b) H. Segawa, Y. Senshu, J.
Nakazaki, K. Susumu, J. Am. Chem. Soc. 2004, 126, 1354.
[5] a) Y. Deng, C. K. Chang, D. G. Nocera, Angew. Chem. 2000, 112,
1108; Angew. Chem. Int. Ed. 2000, 39, 1066; b) R. G. Khoury, L.
Jaquinod, K. M. Smith, Chem. Commun. 1997, 1057; c) A.
Osuka, H. Shimidzu, Angew. Chem. 1997, 109, 93; Angew.
Chem. Int. Ed. Engl. 1997, 36, 135; d) N. Yoshida, H. Shimidzu,
A. Osuka, Chem. Lett. 1998, 55; e) A. Nakano, A. Osuka, I.
Yamazaki, T. Yamazaki, Y. Nishimura, Angew. Chem. 1998, 110,
3172; Angew. Chem. Int. Ed. 1998, 37, 3023; f) A. Nakano, H.
Shimidzu, A. Osuka, Tetrahedron Lett. 1998, 39, 9489; g) T.
Ogawa, Y. Nishimoto, N. Yoshida, N. Ono, A. Osuka, Chem.
Commun. 1998, 337; h) T. Ogawa, Y. Nishimoto, N. Yoshida, N.
Ono, A. Osuka, Angew. Chem. 1999, 111, 140; Angew. Chem. Int.
Ed. 1999, 38, 176; i) N. Yoshida, A. Osuka, Tetrahedron Lett.
2000, 41, 9287; j) A. Tsuda, A. Nakano, H. Furuta, H. Yamochi,
A. Osuka, Angew. Chem. 2000, 112, 572; Angew. Chem. Int. Ed.
2000, 39, 558; k) A. Tsuda, Y. Nakamura, A. Osuka, Chem.
Commun. 2003, 1096; l) A. Tsuda, A. Osuka, Adv. Mater. 2002,
14, 75; m) A. Takagi, Y. Yanagawa, A. Tsuda, N. Aratani, T.
Matsumoto, A. Osuka, T. Kawai, Chem. Commun. 2003, 2986.
Crystals of suitable quality for X-ray analysis were obtained by
the slowdiffusion of ethanol into a solution of 2 in dichloromethane.
Crystal data for 2: C96H74N8·2.25EtOH·0.75CH2Cl2, MW = 1491.86,
T= 100 K, CuKa radiation, monoclinic, space group P21/n, a =
15.829(3), b = 18.772(4), c = 26.673(5) , b = 92.16(3) V=
7920(3) 3, Z = 4, 1calcd = 1.251 MgmÀ3
1.039 mmÀ1
,
l = 1.54178 , m =
,
F(000) = 3124; Oxford Diffraction KM4 Xcalibur2
diffractometer with KM4CCD Sapphire detector; 3.65 ꢁ q ꢁ 73.138,
15495 collected reflections of which 11701 were independent with I >
2s(I), 1097 parameters, R1(F) = 0.0822, wR2(F2) = 0.2606, S = 1.116,
largest difference peak and hole 0.474 and À0.602 eÀ3. All non-
hydrogen atoms were refined with anisotropic displacement param-
eters, except for those of the disordered solvents; hydrogen atoms
were included in the geometry of the molecules and were refined
isotropically. The extensive solvent disorder was modeled with a
number of isotropic C, O, and Cl atoms with free refining occupancies
to finally establish the presence of nine molecules of ethanol and
three molecules of dichloromethane per unit cell. CCDC-245032
contains the supplementary crystallographic data for this paper.
conts/retrieving.html (or from the Cambridge Crystallographic Data
Angew. Chem. Int. Ed. 2004, 43, 5655 –5658
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5657