3066 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 11
Letters
(4) (a) Shenai, B. R.; Sijwali, P. S.; Singh, A.; Rosenthal, P. J.
Characterization of native and recombinant falcipain-2, a pricipal
trophozoite cysteine protease and essential hemoglobinase of Plas-
modium falciparum. J. Biol. Chem. 2000, 275, 29000-29010. (b)
Dua, M.; Raphael, P.; Sijwali, P. S.; Rosenthal, P. J.; Hanspal, M.
Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and
protein 4.1. Mol. Biochem. Parasitol. 2001, 116, 95-99. (c) Hanspal,
M.; Dua, M.; Takakuwa, Y.; Chishti, A. H.; Mizuno, A. Plasmodium
falciparum cysteine protease falcipain-2 cleaves erythrocyte mem-
brane skeletal proteins at late stages of parasite development. Blood
2002, 100, 1048-1054. (d) Dhawan, S.; Dua, M.; Chishti, A. H.;
Hanspal, M. Ankyrin peptide blocks falcipain-2-mediated malaria
parasite release from red blood cells. J. Biol. Chem. 2003, 278,
30180-30186. (e) Rosenthal, P. J. Cysteine proteases of malaria
parasites. Int. J. Parasitol. 2004, 34, 1489-1499.
Chart 2
In this test, phenyl derivative 1a is the least potent inhibitor
(IC50 ≈ 20 µM on both the enzymes). The insertion of an
electron-donating or electron-withdrawing group at position 4
of the phenyl ring of the carbamoyl moiety increased the
inhibitory activity (e.g., 1c).
(5) (a) Nielsen, K. M.; Kasper, J.; Choi, M.; Bedford, T.; Kristiansen,
K.; Wirth, D. F.; Volkman, S. K.; Lozovsky, E. R.; Hartl, D. L. Gene
conversion as a source of nucleotide diversity in Plasmodium
falciparum. Mol. Biol. EVol. 2003, 20, 726-734. (b) Sijwali, P. S.
Rosenthal, P. J. Gene disruption confirms a critica role for the cysteine
protease falcupain-2 in hemoglobin hydrolysis by Plasmodium
falciparum. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4384-4389.
(c) Goh, L. L.; Sim, T. S. Characterization of amino acid variation
at strategic positions in parasite and human proteases for selective
inhibition of falcipains in Plasmodium falciparum. Biochem. Biophys.
Res. Commun. 2005, 335, 762-770. (d) Singh, N.; Sijwali, P. S.;
Pandey, K. C.; Rosenthal, P. J. Plasmodium falciparum: Biochemical
characterization of the cysteine protease falcipain-2′. Exp. Parasitol.
2006, 112, 187-192. (e) Jeong, J.-J.; Kumar, A.; Hanada, T.; Seo,
P.-S.; Li, X.; Hanspal, M.; Chishti, A. H. Cloning and characterization
of Plasmodium falciparum cysteine protease, falcipain-2B. Blood
Cells, Mol. Dis., in press.
(6) Shenai, B. R.; Lee, B. J.; Alvarez-Hernandez, A.; Chong, P. Y.; Emal,
C. D.; Neitz, R. J.; Roush, W. R.; Rosenthal, P. J. Structure-activity
relationships for inhibition of cysteine protease activity and develop-
ment of Plasmodium falciparum by peptidyl vinyl sulfones. Antimi-
crob. Agents Chemother. 2003, 47, 154-160.
(7) Rosenthal, P. J.; Wollish, W. S.; Palmer, J. T.; Rasnick, D.
Antimalarial effects of peptide inhibitors of a Plasmodium falciparum
cysteine proteinase. J. Clin. InVest. 1991, 88, 1467-1472.
(8) Lee, B. J.; Singh, A.; Chiang, P.; Kemp, S. J.; Goldman, E. A.;
Weinhouse, M. I.; Vlasuk, G. P.; Rosenthal, P. J. Antimalarial
activities of novel synthetic cysteine protease inhibitors. Antimicrob.
Agents Chemother. 2003, 47, 3810-3814.
By introduction of a methyl (1h) or a trifluoromethyl (1i)
group at position 2 of 4-chloroderivative 1d, an enhancement
of the inhibitory properties was observed. Also, the extension
of the aromatic area (1b) seems to be fruitful.
It is noteworthy that our compounds inhibit FP-2A and FP-
2B at a similar level. This is of utmost importance, since a recent
gene disruption study on FP-2A knockout parasites revealed
that the loss of FP-2A seems to be compensated by the increased
expression of FP-2B.5b This implies that the drug discovery
process should be focused on the identification of compounds
capable of inhibiting all the essential FPs.5c
To check the selectivity toward other cysteine proteases, these
compounds were tested against a panel of active recombinant
human caspases (i.e., caspases 1-9) according to the published
procedure.21 These compounds did not show any inhibitory
activity up to 50 µM.
Another experimental focus was to evaluate the impact of
chirality at the P3 site on the inhibitory activity against FPs. In
1a-i, an unnatural serine is incorporated in the peptide
sequence. Thereby, in one of the most interesting compounds
(1i), we replaced this amino acid with its natural counterpart.
Compound 1j (Chart 2) was synthesized following the same
procedure described above but with L-serine methyl ester
hydrochloride used as the starting material.
A comparison of the IC50 of diastereomers 1i and 1j indicates
that the stereochemistry at the P3 site does not significantly affect
the inhibitory potency of this class of derivatives against FPs.
In summary, we synthesized a new class of peptidomimetics,
incorporating a 1,4-benzodiazepin-2-one framework, which
proved to inhibit FP-2A and FP-2B enzymes. Further biological
experiments will be required to assess the significance of these
findings to malaria infection in red blood cells both in vitro
and in vivo. These results will form the basis for the develop-
ment of novel antimalarial drugs.
(9) Leung-Toung, R.; Li, W.; Tam, T. F.; Karimian, K. Thiol-dependent
enzymes and their inhibitors: a review. Curr. Med. Chem. 2002, 9,
979-1002
(10) (a) Olson, G. L.; Bolin, D. R.; Bonner, M. P.; Bo¨s, M.; Cook, C.
M.; Fry, D. C.; Graves, B. J.; Hatada, M.; Hill, D. E.; Kahn, M.;
Madison, V. S.; Rusiecki, V. K.; Sarabu, R.; Sepinwall, J.; Vincent,
G. P.; Voss, M. E. Concepts and progress in the development of
peptide mimetics. J. Med. Chem. 1993, 36, 3039-3049. (b) Fairlie,
D. P.; Abbenante, G.; March, D. R. Macrocyclic peptidomimetics.
Forcing peptides into bioactive conformations. Curr. Med Chem.
1995, 2, 654-686.
(11) (a) Golec, J. M. C.; Lauffer, D. J.; Livingston, D. J.; Mullican, M.
D.; Murcko, M. A.; Nyce, P. L.; Robidoux, A. L. C.; Wannamaker,
M. W. Inhibitors of Interleukin-1â Converting Enzyme. Patent WO
9824805, 1998. (b) Amblard, M.; Daffix, I.; Berge´, G.; Calme`s, M.;
Dodey, P.; Pruneau, D.; Paquet, J.-L.; Luccarini, J.-M.; Be´lichard,
P.; Martinez, J. Synthesis and characterization of bradykinin B2
receptor agonists containing constrained dipeptide mimics. J. Med.
Chem. 1999, 42, 4193-4201. (c) Dziadulewicz, E. K.; Brown, M.
C.; Dunstan, A. R.; Lee, W.; Said, N. B.; Garratt, P. J. The design
of non-peptide human bradykinin B2 receptor antagonists employing
the benzodiazepine peptidomimetic scaffold. Bioorg. Med. Chem.
Lett. 1999, 9, 463-468.
(12) Rotonda, J.; Nicholson, D. W.; Fazil, K. M.; Gallant, M.; Gareau,
Y.; Labelle, M.; Peterson, E. P.; Rasper, D. M.; Ruel, R.; Vaillancourt,
J. P.; Thornberry, N. A.; Becker, J. W. The three-dimensional
structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct.
Biol. 1996, 3, 619-625.
(13) McKillop, A.; Taylor, R. J. K.; Watson, R. J.; Lewis, N. An improved
procedure for the preparation of the Garner aldehyde and its use for
the synthesis of N-protected 1-halo-2(R)-amino-3-butenes. Synthesis
1994, 31-33.
Acknowledgment. Financial support from NIH Grants
HL60961 (A.H.C.) and AI50600 (M.H.) is acknowledged.
Supporting Information Available: Experimental procedures,
characterization of new compounds, and references to known
procedures. This material is available free of charge via the Internet
References
(1) (a) Breman, J. G. The ears of the hippopotamus: manifestations,
determinants, and estimates of the malaria burden. Am. J. Trop. Med.
Hyg. 2001, 64s, 1-11. (b) Greenwood, B.; Mutabingwa, T. Malaria
in 2002. Nature 2002, 415, 670-672.
(2) (a) Hyde, J. E. Mechanisms of resistance of Plasmodium falciparum
to antimalarial drugs. Microbes Infect. 2002, 4, 165-174. (b) Ridley,
R. G. Medical need, scientific opportunity and drive for antimalarial
drugs. Nature 2002, 415, 686-693.
(3) (a) Rosenthal, P. J. Hydrolysis of erythrocyte proteins by proteases
of malaria parasites. Curr. Opin. Hematol. 2002, 9, 140-145. (b)
Klemba, M.; Goldberg, D. E. Biological roles of proteases in parasitic
protozoa. Annu. ReV. Biochem. 2002, 71, 275-305.
(14) Graybill, T. L.; Dolle, R. E.; Helaszek, C. T.; Miller, R. E.; Ator,
M. A. Preparation and evaluation of peptidic aspartyl hemiacetals
as reversible inhibitors of interleukin-1â converting enzyme (ICE).
Int. J. Pept. Protein Res. 1994, 44, 173-182.