C O M M U N I C A T I O N S
With ESI-MS, up to five OPVT molecules bound to dT10 were
detected (Figure 3b).
In conclusion, new DNA hybrids have been constructed in which
the number of chromophores is controlled by the template. Binding
of chromophores to ssDNA occurs via hydrogen bonding and is
stabilized by π-π interactions. This approach can, in principle, be
applied to any functional molecule equipped with an appropriate
hydrogen-bonding moiety to create uniform well-organized nanos-
cale objects that are potentially useful in the emerging field of
supramolecular electronics.15
Acknowledgment. The authors wish to acknowledge X. Lou
for the MALDI-TOF spectra, and EURYI scheme for financial
support.
Supporting Information Available: Experimental methods, syn-
thetic details, and characterization of NT and OPVT (PDF). This
References
(1) For recent examples and reviews, see: (a) Seeman, N. C. Methods Mol.
Biol. 2005, 303, 143-166. (b) Rothemund, P. W. K. Nature 2006, 440,
297-302. (c) Ding, B.; Seeman, N. C. Science 2006, 314, 1583-1585.
(d) Gothelf, K. V.; LaBean, T. H. Org. Biomol. Chem. 2005, 3, 4023-
4037. (e) Brucale, M.; Zuccheri, G.; Samor`ı, B. Trends Biotechnol. 2006,
24, 235-243. (f) Lund, K.; Williams, B.; Ke, Y.; Liu, Y.; Yan, H. Curr.
Nanosci. 2006, 2, 113-122.
(2) Examples of other templates: (a) Sugimoto, T.; Suzuki, T.; Shinkai, S.;
Sada, K. J. Am. Chem. Soc. 2007, 129, 270-271. (b) Lee, S. K.; Yun, D.
S.; Belcher, A. M. Biomacromolecules 2006, 7, 14-17. (c) Kato, T.;
Frechet, J.-M. J. Liq. Cryst. 2006, 33, 1429-1433. (d) Ikkala, O.; ten
Brinke, G. Chem. Commun. 2004, 19, 2131-2137.
(3) For recent examples and reviews, see: (a) Lewis, F. D.; Zhang, L.; Zuo,
X. J. Am. Chem. Soc. 2005, 127, 10002-10003. (b) Cuppoletti, A.; Cho,
Y.; Park, J.-S.; Stra¨ssler, C.; Kool, E. T. Bioconjugate Chem. 2005, 16,
528-534. (c) Balaz, M.; Holmes, A. E.; Benedetti, M.; Rodriquez, P. C.;
Berova, N.; Naknishi, K.; Proni, G. J. Am. Chem. Soc. 2005, 127, 4172-
4173. (d) Kashida, H.; Asanuma, H.; Komiyama, M. Angew. Chem., Int.
Ed. 2004, 43, 6522-6525.
(4) For recent examples and reviews, see: (a) Ihmels, H.; Otto, D. Top. Curr.
Chem. 2005, 258, 161-204. (b) Pindur, U.; Jansen, M.; Lemster, T. Curr.
Med. Chem. 2005, 12, 2805-2847. (c) Armitage, B. A. Mol. Supramol.
Photochem. 2006, 14, 255-287. (d) Fechter, E. J.; Olenyuk, B.; Dervan,
P. B. J. Am. Chem. Soc. 2005, 127, 16685-16691.
(5) For example: (a) Tanaka, K.; Tengeiji, A.; Kato, T. N.; Shonoya, M.
Science 2003, 299, 1212-1213. (b) Tanaka, K.; Clever, G. H.; Takezawa,
Y.; Yamada, Y.; Kaul, C.; Shionoya, M.; Carell, T. Nat. Nanotechnol.
2006, 1, 190-194.
Figure 1. (a) CD and (b) absorption spectra and (f) the normalized UV
(0) and CD (O) intensities at 269 nm as a function of temperature of a
NT-dT40 mixture ([NT] ) 0.5 mM, [dT40] ) 8.5 µM). (c) Titration of
NT to dT40, with [dT40] ) 8.5 µM and [NT] increasing from 0 to 0.5
mM, monitored at 269 nm (absorption (9), CD intensity (O)). (d) A Job
plot of NT to dT40 ([NT] + 40[dT40] ) 1.66 mM with f ) [NT]/1.66
mM). (e) Deconvoluted ESI-MS spectrum of [dT10] ) 0.2 mM and [NT]
) 2 mM.
(6) (a) Iwaura, R.; Hoeben, F. J. M.; Masuda, M.; Schenning, A. P. H. J.;
Meijer, E. W.; Shimizu, T. J. Am. Chem. Soc. 2006, 128, 13298-13304.
(b) Iwaura, R.; Yoshida, K.; Masuda, M.; Ohnishi-Kameyama, M.;
Yoshida, M.; Shimizu, T. Angew. Chem., Int. Ed. 2003, 42, 1009-1012.
(7) (a) Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Science 1991,
245, 1497-1500. (b) Nielsen, P. E.; Haaima, G. Chem. Soc. ReV. 1997,
73-78. (c) de Koning, M. C.; van der Marel, G. A.; Overhand, M. Curr.
Opin. Chem. Biol. 2003, 7, 734-740. (d) Eckstein, F. Nucleosides
Nucleotides 1985, 4, 165-167. (d) Kool, E. T. Acc. Chem. Res. 2002,
35, 936-943. (e) Kool, E. T. Chem. ReV. 1997, 97, 1473-1487. (f)
Krueger, A. T.; Lu, H.; Lee, A. H. F.; Kool, E. T. Acc. Chem. Res. 2007,
40, 141-150.
Figure 2. (a) CD spectra at 263 K of a mixture of dT40 (12.5 µM) and
NT (0.5 mM) (O) and of the same mixture after adding 1 equiv of dA40
(0). (b) Plot of Te against ln[NT] of NT-dT40 (absorption (4, solid
line), CD (O)) mixtures (40:1) and of NT alone (absorption (9, dashed
-1
line)).
(8) Jonkheijm, P.; Hoeben, F. J. M.; Kleppinger, R.; van Herrikhuyzen, J.;
Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125,
15941-15949.
(9) See Supporting Information.
(10) It should be noted that dT40 shows a small Cotton effect below 300 nm.
(11) Dynamic light scattering (DLS) experiments hardly showed scattering
indicating relatively small aggregates, while the contrast in the cryo-TEM
images was too low to judge the size and shape of the aggregates.
(12) (a) Jonkheijm, P.; van der Schoot, P.; Schenning, A. P. H. J.; Meijer, E.
W. Science 2006, 313, 80-83. (b) Ciferri, A. Supramolecular Polymers,
2nd ed.; CRC Press LLC: Boca Raton, FL, 2005; pp 77-106.
(13) We did not analyze the cooling curves in detail because our recently
developed nucleation growth model is not valid for discrete assembly;
see ref 12a.
Figure 3. (a) CD spectra of an OPVT-dT40 mixture ([OPVT] ) 0.27
mM, [dT40] ) 6.75 µM). (b) Deconvoluted ESI-MS spectrum of [dT10-
OPVT] ) 1 mM at 293 K.
(14) Breslauer, K. J.; Frank, R.; Blocker, H.; Marky, L. A. Proc. Natl. Acad.
Sci. U.S.A. 1986, 83, 9373-9377.
(15) For example: (a) Grimsdale, A. C.; Mu¨llen, K. Angew. Chem., Int. Ed.
2005, 44, 5592-5629. (b) Schenning, A. P. H. J.; Meijer, E. W. Chem.
Commun. 2005, 3245-3258. (c) Yamamoto, Y.; Fukushima, T.; Suna,
Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.;
Aida, T. Science 2006, 314, 1761-1764.
wavelengths suggests a right-handed helical arrangement of OPVT
molecules upon binding to dT40. Compared to a similar concentra-
tion of NT-dT40 the Te of the OPVT-dT40 is higher, probably
due to extended π-π interactions in the supramolecular strand.
JA0711967
9
J. AM. CHEM. SOC. VOL. 129, NO. 19, 2007 6079