C O M M U N I C A T I O N S
Table 1. Asymmetric Transfer Hydrogenation of Aromatic Ketones
8-13 Catalyzed by Ruthenium(II) Dimer 6 or Monomer 3a
loading
(mol %)
T
t
%ee
catalyst
(
°
C)
ketone
(h)
% conv.
(R/S)
(S,S)-3
(S,S)-3
(R,R)-6
(R,R)-6
(S,S)-3
(S,S)-3
(S,S)-3
(R,R)-6
(R,R)-6
(R,R)-6
(R,R)-6
(R,R)-6
(R,R)-6
0.5
0.5
0.5
0.5
0.1
0.01
0.1
0.1
0.5
0.5
0.5
0.5
0.5
28
40
40
40
40
40
80
40
40
40
40
40
28
8
8
8
8
8
8
8
8
9
10
11
12
13
3
2
3
2
5
100
100
100
100
100
98
96 (S)
96 (S)
96 (R)
96 (R)
96 (S)
96 (S)
94 (S)
96 (R)
94 (R)
95 (R)
77 (R)
94 (R)
69 (S)
added to a triethylamine/formic acid mixture prior to addition of
ketone. The ligand/metal stoichiometry is effectively “built-in” to
the catalyst design. The reduction rates exceed those reported for
the untethered complexes, and the catalyst is effective at loadings
of as low as 0.01 mol %. The reduction enantioselectivity is, in
most cases, superior to that in other ATH catalysts.
79
0.33
99
12
3
24
32
24
24
100
100
92
95
90
Acknowledgment. We thank the EPSRC and Warwick Uni-
versity (research fellowship to A.M.H.) for financial support of this
project.
100
a Reaction at 28 °C in a 2 M solution of ketone in a formic acid/
triethylamine (5:2) azeotrope mixture, and S/C ) 200 unless otherwise
specified.
Supporting Information Available: Experimental procedures,
characterization data, NMR spectra, chiral chromatography analysis of
reduction products, and data of single-crystal X-ray analysis of 3. This
longevity of catalyst 3 was also demonstrated by an experiment in
which further portions of acetophenone were repeatedly added to the
reaction mixture (together with additional formic acid) after the
reduction had gone to completion. After each addition, the catalyst
continued to be effective in achieving full reduction without loss of
enantioselectivity, over seven cycles (see Supporting Information).
A further series of ketones were reduced using 3 and 6 (Table
1). Studies focused on the variation of the alkyl group in the series
8-12, while the alkyl/alkyl ketone 13 represents a substrate which
does not usually work very well with this class of catalyst. In the
event, all ketones proved to be compatible substrates, although the
best results were at 40 °C. At this temperature, ketones 9, 10, and
12 were reduced in excellent enantioselectivity, while the enantio-
meric excess for 11 was lower. These results compare favorably
with other ATH catalysts employed for these substrates.1b,6b,c Using
the untethered 1, 10 is reported to be reduced in just 41% yield
(83% ee), and 11 is not reduced to any measurable extent.2b
References
(1) (a) Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045.
(b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (c)
Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. ReV. 1992, 92, 1051.
(d) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. ReV. 2004,
248, 2201-2237.
(2) (a) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1996, 118, 2521. (b) Matsumura, K.; Hashiguchi, S.; Ikariya,
T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738. (d) Murata, K.; Okano,
K.; Miyagi, M.; Iwane, H.; Noyori, R.; Ikariya, T. Org. Lett. 1999, 1,
1119.
(3) (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1995, 117, 7562. (b) Yamakawa, M.; Yamada, I.; Noyori, R.
Angew. Chem., Int. Ed. 2001, 40, 2818. (c) Yamakawa, M.; Ito, H.; Noyori,
R. J. Am. Chem. Soc. 2000, 122, 1466.
(4) (a) Haack, K. J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew.
Chem., Int. Ed. Engl. 1997, 36, 285. (b) Noyori, R.; Yamakawa, M.;
Hashiguchi, S. J. Org. Chem. 2001, 66, 7931.
(5) Takehara, J.; Hashiguchi, S.; Fujii, A.; Inoue, S.-I.; Ikariya, T.; Noyori,
R. Chem. Commun. 1996, 233.
(6) (a) Brandt, P.; Roth, P.; Andersson, P. G. J. Org. Chem. 2004, 69, 4885.
(b) Li, Y.-Y.; Zhang, H.; Chen, J.-S.; Liao, X.-L.; Dong, Z.-R.; Gao, J.-
X. J. Mol. Catal. A: Chem. 2004, 218, 153. (c) Chen, J.-S.; Li, Y.-Y.;
Dong, Z.-R.; Li, B.-Z.; Gao, J.-X. Tetrahedron Lett. 2004, 45, 8415. (d)
Everaere, K.; Mortreaux, A.; Carpentier, J.-F. AdV. Synth. Catal. 2003,
345, 67. (e) Faller, J. W.; Lavoie, A. R. Organometallics 2002, 21, 2010.
(7) (a) Palmer, M.; Walsgrove, T.; Wills, M. J. Org. Chem. 1997, 62, 5226.
(b) Palmer, M. J.; Kenny, J. A.; Walsgrove, T.; Kawamoto, A. M.; Wills,
M. J. Chem. Soc., Perkin Trans. 1 2002, 416. (c) Hayes, A.; Clarkson,
G.; Wills, M. Tetrahedron: Asymmetry 2004, 15, 2079-84. (d) Bastin,
S.; Eaves, R. J.; Edwards, C. W.; Ichihara, O.; Whittaker, M.; Wills, M.
J. Org. Chem. 2004, 69, 5405. (e) Hannedouche, J.; Clarkson, G. J.; Wills,
M. J. Am. Chem. Soc. 2004, 126, 986.
(8) (a) Puntener, K.; Schwink, L.; Knochel, P. Tetrahedron Lett. 1996, 37,
8165. (b) Tanaka, K.; Katsurada, M.; Ohno, F.; Shiga, Y.; Oda, M. J.
Org. Chem. 2000, 65, 432. (c) Miyagi, M.; Takehara, J.; Collet, S.; Okano,
K. Org. Proc. Res. 2000, 47, 367. (d) Okano, K.; Murata, K.; Ikariya, T.
Tetrahedron Lett. 2000, 41, 9277. (e) Li, M.; Scott, J.; O’Doherty, G. A.
Tetrahedron Lett. 2004, 45, 1005. (f) Marshall, J. A.; Ellis, K. Tetrahedron
Lett. 2004, 45, 1351. (g) Lennon, I. C.; Ramsden, J. A. Org. Proc. Res.
DeV. 2005, 9, 110. (h) Watanabe, M.; Murata, K.; Ikariya, T. J. Org.
Chem. 2002, 67, 1712. (i) Yamashita, H.; Ohtani, T.; Morita, S.; Otsubo,
K.; Kan, K.; Matsubara, J.; Kitano, K.; Kawano, Y.; Uchida, M.; Tabusa,
F. Heterocycles 2002, 56, 123.
Ketone 13 was reduced in 69% ee, which is the best result for
any TsDPEN-related transfer hydrogenation catalyst.5,10 Ketones
8-12 were all reduced to the R enantiomer using R,R-catalyst,
which represents the same configuration with respect to the position
of the aromatic ring, while 13 gave the S product using the R,R-
catalyst, indicating hydride delivery from the opposite face. These
results suggest that 3 reduces aryl/alkyl ketones through a transition
state in which a stabilizing π-aryl-arene interaction ensures a high
enantiomeric excess.2,3 The reversed selectivity for 13 suggests that
when this interaction is not available, the transition state has the
larger ketone substituent facing away from the arene ring. We have
obtained direct evidence (1H NMR) for the formation of both the
16-electron Ru(II) and the Ru-H intermediates involved in this
reaction mechanism (see Supporting Information).
Other than through stabilization of the catalyst, the role of the
tether is not fully clear. However, it is not merely the effect of a
secondary amine over a primary; a nontethered complex formed
from N-benzyl-N′-tosyl-DPEN 14 was totally ineffective as a
catalyst.11 This confirms that the fixed positioning of the tether is
important to its activity.
(9) (a) Wu, X.; Li, X.; Hems, W.; King, F.; Xiao, J. Org. Biomol. Chem.
2004, 1818. (b) Bubert, C.; Blacker, J.; Brown, S. M.; Crosby, J.; Fitzjohn,
S.; Muxworthy, J. P.; Thorpe, T.; Williams, J. M. J. Tetrahedron Lett.
2001, 42, 4037.
(10) ATH of alkyl/alkyl ketones: (a) Nishibayashi, Y.; Takei, I.; Uemura, S.;
Hidai, M. Organometallics 1999, 18, 2291. (b) Arikawa, Y.; Ueoka, M.;
Matoba, K.; Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Organomet. Chem.
1999, 572, 163. (c) Jiang, Y.; Jiang, Q.; Zhu, G.; Zhang, X. Tetrahedron
Lett. 1997, 38, 215. (d) Langer, T.; Helmchen, G. Tetrahedron Lett. 1996,
37, 1381.
(11) Ru(II) complex of such N-Me-TsDPEN in studies of ruthenium hydride
formation: Koike, T.; Ikariya, T. AdV. Synth. Catal. 2004, 346, 37-41.
The catalyst is exceptionally practical and easy to prepare and
use as it is a single-component catalyst which merely has to be
JA051486S
9
J. AM. CHEM. SOC. VOL. 127, NO. 20, 2005 7319