C O M M U N I C A T I O N S
tions driven by the formation and cleavage of the molecular
assemblies.
In conclusion, we have shown the first presentation of the intra-
and intermolecular mechanism of C-N interconversions of transi-
tion metal R-cyanocarbanions. The results will provide significant
information on the controlled generation of N-bound R-cyano-
carbanion active species3c-e,5b for catalytic C-C bond forming
reactions of nitriles. Further studies are currently in progress.
Supporting Information Available: Experimental details for all
reactions, representative kinetic data for the isomerizations of 1 and 3,
crystallographic data for 1, (RRu*,SC*)-2 and 5 (PDF). This material is
Figure 1. Molecular structure of 5. Thermal ellipsoids are shown at the
30% probability level. Selected bond distances (Å) and angles (deg.):
Ru(1)-C(1), 2.220(5); C(1)-C(2)*, 1.449(8); C(2)-N(1), 1.145(7); N(1)-
Ru(1), 2.073(4); Ru(1)-C(1)-C(2)*, 103.8(3); C(1)-C(2)*-N(1)*, 168.8(5);
C(2)-N(1)-Ru(1), 156.7(4); N(1)-Ru(1)-C(1), 80.5(2).
References
(1) (a) Slough, G. A.; Bergman R. G.; Heathcock, C. H. J. Am. Chem. Soc.
1989, 111, 938. (b) Stack, J. G.; Doney, J. J.; Bergman, R. G.; Heathcock,
C. H. Organometallics 1990, 9, 453. (c) Hartwig, J. F.; Andersen, R. A.;
Bergman, R. G. J. Am. Chem. Soc. 1990, 112, 5670. (d) Stack, J. G.;
Simpson, R. D.; Hollander, F. J.; Bergman, R. G.; Heathcock, C. H. J.
Am. Chem. Soc. 1990, 112, 2716.
(2) C-Bound complexes: (a) Ittel, S. D.; Tolman, C. A.; English, A. D.; Jesson,
J. P. J. Am. Chem. Soc. 1978, 100, 7577. (b) Crocco, G. L.; Lee, K. E.;
Gladysz, J. A. Organometallics 1990, 9, 2819. (c) Falvello, L. R.;
Ferna´ndez, S.; Navarro, R.; Urriolabeitia, E. P. Inorg. Chem. 1997, 36,
1136. (d) Reference 1b. (e) Kujime, M.; Hikichi, S.; Akita, M. Organo-
metallics 2001, 20, 4049.
(3) N-Bound complexes: (a) Ricci, J. S.; Ibers, J. A. J. Am. Chem. Soc. 1971,
93, 2391. (b) Tanabe, Y.; Seino, H.; Ishii, Y.; Hidai, M. J. Am. Chem.
Soc. 2000, 122, 1690. (c) Hirano, M.; Takenaka, A.; Mizuho, Y.; Hiraoka,
M.; Komiya, S. J. Chem. Soc., Dalton Trans. 1999, 3209. (d) Murahashi,
S.-I.; Take, K.; Naota, T.; Takaya, H. Synlett 2000, 7, 1016. (e) Naota,
T.; Tannna, A.; Murahashi, S.-I. Chem. Commun. 2001, 63. (f) Reference
2e.
To verify the presence of the intramolecular process, kinetic
studies on the reaction of 3 with an excess amount of PPh3 in
1
benzene-d6 (eq 2) were carried out by H NMR analysis ([3]0 )
2.00 × 10-2 M, [PPh3]0 ) 4.00 × 10-1 M). The formation of the
coordination dimers was retarded to negligible amounts (<1%),
and the consumption rate of 3 showed clean first-order dependence
on [3] at 333-348 K. From the obtained first-order rate constants
k2: 1.31(1) × 10-4 s-1 (333 K); 2.52(2) × 10-4 s-1 (338 K); 4.70(7)
× 10-4 s-1 (343 K); 7.50(20) × 10-4 s-1 (348 K), the ∆Hq and
∆Sq values were estimated to be 121 ( 1 kJ‚mol-1 and 42 ( 4
J‚K-1‚mol-1 by the satisfactory Eyring relationship (R2 ) 1.000),
indicating the intramolecular process in the C-to-N isomerization
of 3.
(4) Naota, T.; Tannna, A.; Murahashi, S.-I. J. Am. Chem. Soc. 2000, 122,
2960.
(5) (a) Naota, T.; Taki, H.; Mizuno, M.; Murahashi, S.-I. J. Am. Chem. Soc.
1989, 111, 5954. (b) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno, M.;
Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano,
M.; Fukuoka, A. J. Am. Chem. Soc. 1995, 117, 12436. (c) Takaya, H.;
Naota, T.; Murahashi, S.-I. J. Am. Chem. Soc. 1998, 120, 4244.
(6) The linkage isomerization of transition metal enolates: (a) Fish, R. H. J.
Am. Chem. Soc. 1974, 96, 6664. (b) Baba, S.; Ogura, T.; Kawaguchi, S.
Bull. Chem. Soc. Jpn. 1974, 47, 665. (c) Komiya, S.; Kochi, J. K. J. Am.
Chem. Soc. 1977, 99, 3695. (d) References 1a-c.
Cleavage of dimer species 5 (see Figure 1 for the structure of 5)
with PPh3 was examined to clarify the suggested intermolecular
pathway. When a 1.25 mM solution of 5 in benzene was heated at
373 K in the presence of PPh3 (4 equiv), the dimeric structure was
collapsed to afford N-bound complex 4 in a quantitative yield (eq
3). The reaction course of the cleavage of 5 with an excess amount
of PPh3 (40 equiv) at 313 K in benzene-d6 showed that the
concentrations of 3 and 4 increase with good linear time-dependence
until conversion of 5 reaches up to 20%. The observed rate constants
for the initial formation of 3 and 4 (kobs ) d[3]/dt, d([4]/dt) were
estimated to be 5.44(11) × 10-8 M‚s-1 (R2 ) 0.996) and 1.03(2)
× 10-8 M‚s-1 (R2 ) 0.998), the latter of which is 1.5 times larger
than that for the initial formation of 4 obtained in the C-to-N
(7) Zwitterionic and R-metalated structures of 1 and (RRu*,SC*)-2 (major
diastereomer) have been confirmed by X-ray diffraction. 1: orthorhombic,
P212121 (No. 19), a ) 17.95 (1) Å, b ) 20.169 (6) Å, c ) 10.467 (5) Å,
V ) 3790(2) Å3, Z ) 4, R ) 0.040, wR2 ) 0.114, GOF ) 1.01.
(RRu*,SC*)-2: triclinic, P-1 (No. 2), a ) 12.77 (1) Å, b ) 13.09 (6) Å,
c ) 11.292 (6) Å, a ) 98.67 (6), b ) 91.78 (7), g ) 61.87 (4), V ) 1643
(2) Å3, Z ) 2, R ) 0.031, wR2 ) 0.067, GOF ) 1.01.
(8) 1H NMR monitoring showed that the concentration of 1 declines with
constant and exclusive formation of 59:41 mixture of (RRu*,SC*)- and
(RRu*,RC*)-2, which indicates that the consumption rate of 1 can be
regarded as a sum of the rate of two independent isomerizations; 1 to
(RRu*,SC*)- and (RRu*,RC*)-2. These diastereomers were also confirmed
to be inert under the kinetic conditions.
isomerization of 3 under similar conditions (6.67(12) × 10-9 M‚s-1
,
R2 ) 0.994).11 These results clearly indicate the presence of both
C-Ru and N-Ru scissions in the cleavage of 5, showing the
inclusion of the intermolecular process in the C-to-N isomerization
of 3.
(9) The reaction of 3 in benzene at room temperature gives a 73:27 mixture
of 5 and 6, while similar treatment in THF affords 5 (22%) as a sole
diastereomer (eq 3). Selected characterization data: 5: IR (KBr) 2195
(CN) cm-1 1H NMR (270 MHz, C6D6) δ 2.95 (d, J ) 5.0 Hz, 2 H,
;
CHCN), 4.75 (s, 10 H, CpH); FABMS m/z 1218 [M]+. 6: 1H NMR (270
MHz, C6D6) δ 4.18 (d J ) 1.5 Hz, 1 H, CHCN), 4.22 (d, J ) 4.2 Hz, 1
H, CHCN), 4.63 (s, 10 H, CpH); FABMS m/z 1218 [M]+. Considering
from unsymmetrical H(1) NMR signals of 6, the stereochemistry of 6
was assigned to be (RRu*,RC*,RRu*,SC*) or (RRu*,RC*,SRu*,RC*).
The schematic representation of intramolecular pathways for
the C-to-N and N-to-C isomerizations are shown in Scheme 1a,
where the metal fragments would undergo slippage on the
C-C-N surfaces and η1-η2 conversion on the coordinated nitriles.
The wide-angle rotation of the η1-η2 conversion can be rationalized
by assuming the bent azaallenyl intermediates (M-NdCdC).
Acceleration with isonitriles could be arising from the ligand-
assisted enhancement of this initiating step. The intermolecular
pathway participates only in the C-to-N isomerization as shown in
Scheme 1b. Due to requirement for the severe conditions in the
cleavage of the coordination dimers, the intermolecular process is
accompanied with the intramolecular one with high temperature
dependence. This is a quite rare example of molecular transforma-
(10) µ2-C,N-Bound structure of the dimer species has been unequivocally
established by X-ray analysis of 5 as shown in Figure 1, although it has
been lying on the level of speculation in the literatures: (a) Cummins,
D.; Higson, B. M.; McKenzie, E. D. J. Chem. Soc., Dalton 1973, 414.
(b) Ros, R.; Renaud, J.; Roulet, R. HelV. Chim. Acta 1975, 58, 133. (c)
Oehme, G.; Ro¨ber, K.-C.; Pracejus, H. J. Organomet. Chem. 1976, 105,
127. (d) References 1d, 2c. Crystallographic data for 5: monoclinic, C2/
c, a ) 17.430 (3) Å, b ) 16.621 (5) Å, c ) 21.903 (3) Å, b ) 96.88 (1)°,
V ) 6299 (2) Å3, Z ) 8, R ) 0.054, wR2 ) 0.136, GOF ) 1.00.
(11) The kinetic data were obtained by the similar 1H NMR analysis of the
isomerization of 3 in the presence of excess PPh3 in benzene-d6 at 313 K
until 10% conversion ([3]0 ) 1.71 × 10-3 M, [PPh3]0 ) 6.83 × 10-2 M).
JA017868P
9
J. AM. CHEM. SOC. VOL. 124, NO. 24, 2002 6843