1
22
W. Szmaja et al. / Chemical Physics Letters 542 (2012) 117–122
[15] M. Cichomski et al., J. Alloys Compd. 507 (2010) 273.
preferred elongation and no geometric alignment. The recorded
images of the grain structure were subjected to digital processing
and analysis for obtaining quantitative information on grain sizes.
The average grain sizes for the investigated films were determined
using the standard linear intercept method. Thanks to applying the
SEM and AFM techniques, useful complementary information on
the morphological structure of the films could be obtained.
The magnetic structure of the films was composed of domains.
The domains formed a maze pattern and possessed sizes of the or-
der of 500 nm. The domain structure was characteristic of materi-
als with sufficiently high perpendicular magnetic anisotropy. As a
consequence, the deposits were found to crystallize mainly in the
HCP structure with sufficiently strong [0001] preferred orienta-
tion. The average domain sizes for the studied films were deter-
mined using the standard linear intercept method. The obtained
results show that the average domain size slightly increased with
decreasing average grain size.
[
[
16] W. Gil, D. Görlitz, M. Horisberger, J. Kötzler, Phys. Rev. B 72 (2005) 134401.
17] C.-P. Liu, J.-J. Chang, S.-W. Chen, H.-C. Chung, Y.-L. Wang, Appl. Phys. A 80
(
2005) 1601.
[18] M.F. Chioncel, H.S. Nagaraja, F. Rossignol, P.W. Haycock, J. Magn. Magn. Mater.
13 (2007) 135.
19] N. Deo, M.F. Bain, J.H. Montgomery, H.S. Gamble, J. Mater. Sci.: Mater. Electron.
6 (2005) 387.
[20] R. Fukui, Y. Katayama, T. Miura, Electrochim. Acta 56 (2011) 1190.
3
[
1
[
21] H. Harti, J.-L. Bubendorff, A. Florentin, C. Pirri, J. Ebothe, J. Cryst. Growth 319
2011) 79.
22] I. Flis-Kabulska, J. Appl. Electrochem. 36 (2006) 131.
(
[
[23] M.V. Rastei, S. Colis, J.P. Bucher, Chem. Phys. Lett. 417 (2006) 217.
[
[
[
24] S. Armyanov, Electrochim. Acta 45 (2000) 3323.
25] C.A. Moina, L. de Oliveira-Versic, M. Vazdar, Mater. Lett. 58 (2004) 3518.
26] M. Rivera, C.H. Rios-Reyes, L.H. Mendoza-Huizar, Appl. Surf. Sci. 255 (2008)
1754.
[
27] M. Rivera, C.H. Rios-Reyes, L.H. Mendoza-Huizar, J. Magn. Magn. Mater. 323
(
2011) 997.
[
28] M. Zieli n´ ski, E. Mi e˛ ko s´ , J. Appl. Electrochem. 38 (2008) 1771.
[29] P. Grütter, H.J. Mamin, D. Rugar, in: R. Wiesendanger, H.-J. Güntherodt (Eds.),
Scanning Tunneling Microscopy II, Springer, Berlin, 1992, p. 151.
[
30] W. Szmaja, in: P.W. Hawkes (Ed.), Advances in Imaging and Electron Physics,
vol. 141, Elsevier, Amsterdam, 2006, p. 175.
Acknowledgements
[
[
31] D.P. Weston, P.H. Shipway, S.J. Harris, M.K. Cheng, Wear 267 (2009) 934.
32] I. Tabakovic, J. Gong, S. Riemer, V. Venkatasamy, M. Kief, Electrochim. Acta 55
(
2010) 9035.
This work was supported by the Łód z´ University. Witold Szmaja
dedicates the Letter to the memory of his mother.
[
[
33] A. Hubert, R. Schäfer, Magnetic Domains: The Analysis of Magnetic
Microstructures, Springer, Berlin, 1998. p. 329.
34] T.G. Woodcock, K. Khlopkov, A. Walther, N.M. Dempsey, D. Givord, L. Schultz,
O. Gutfleisch, Scripta Mater. 60 (2009) 826.
References
[
[
[
[
[
[
35] W. Szmaja, J. Magn. Magn. Mater. 301 (2006) 546.
36] J. Garcia-Torres, E. Gómez, E. Vallés, Mater. Chem. Phys. 122 (2010) 463.
37] W. Szmaja, J. Grobelny, M. Cichomski, Appl. Phys. Lett. 85 (2004) 2878.
38] H.S. Park, D. Shindo, S. Mitani, K. Takanashi, IEEE Trans. Magn. 41 (2005) 3724.
39] F. Stobiecki et al., Appl. Phys. Lett. 92 (2008) 012511.
[
[
1] H. Zabel, Superlatt. Microstruct. 46 (2009) 541.
2] P.P. Freitas, R. Ferreira, S. Cardoso, F. Cardoso, J. Phys.: Condens. Matter 19
(
2007) 165221.
3] N.V. Myung, D.-Y. Park, B.-Y. Yoo, P.T.A. Sumodjo, J. Magn. Magn. Mater. 265
2003) 189.
4] N.M. Dempsey, in: J.P. Liu, E. Fullerton, O. Gutfleisch, D.J. Sellmyer (Eds.),
Nanoscale Magnetic Materials and Applications, Springer, Dordrecht, 2009, p.
[
[
40] X.M. Li, Y.K. Fang, Z.H. Guo, T. Liu, Y.Q. Guo, W. Li, B.S. Han, Chin. Phys. B 17
(
(
2008) 2281.
[
[
[
41] D. Nunes, R. Colaço, J.Th.M. de Hosson, A.P. Gonçalves, L.C.J. Pereira, P.A.
Carvalho, J. Alloys Compd. 487 (2009) 11.
42] Y.T. Chen, S.U. Jen, Y.D. Yao, J.M. Wu, C.C. Lee, A.C. Sun, IEEE Trans. Magn. 42
6
61.
[
[
[
[
5] G. Srajer et al., J. Magn. Magn. Mater. 307 (2006) 1.
6] H.J. Richter, J. Phys. D: Appl. Phys. 40 (2007) R149.
7] J. Brandenburg, R. Hühne, L. Schultz, V. Neu, Phys. Rev. B 79 (2009) 054429.
8] F. Dumas-Bouchiat, H.S. Nagaraja, F. Rossignol, C. Champeaux, G. Trolliard, A.
Catherinot, D. Givord, J. Appl. Phys. 100 (2006) 064304.
(
2006) 278.
43] J. Lindner, M. Farle, in: H. Zabel, S.D. Bader (Eds.), Springer Tracts in Modern
Physics, vol. 227, Springer, Berlin, 2007, p. 45.
44] Y. Gao, J. Zhu, Y. Weng, B. Han, Appl. Phys. Lett. 74 (1999) 1749.
45] W. Szmaja, K. Pola n´ ski, K. Dolecki, J. Magn. Magn. Mater. 130 (1994) 147.
46] A. Vicenzo, P.L. Cavallotti, Electrochim. Acta 49 (2004) 4079.
47] G.C. Hadjipanayis, J. Magn. Magn. Mater. 200 (1999) 373.
[
[
[
[
[
[
9] H.Y. Kwong, Y.W. Wong, J. Alloys Compd. 497 (2010) 267.
[
10] A. Sharma, S. Tripathi, N. Lakshmi, P. Sachdev, T. Shripathi, Solid State
Commun. 149 (2009) 1033.
48] W. Szmaja, J. Grobelny, M. Cichomski, S. Hirosawa, Y. Shigemoto, Acta Mater.
[
[
[
11] Y. Kageyama, T. Suzuki, J. Magn. Magn. Mater. 310 (2007) e789.
12] M.T. Umlor, Appl. Phys. Lett. 87 (2005) 082505.
13] D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, M. Schubert, J.
Appl. Phys. 105 (2009) 113508.
5
9 (2011) 531.
[
49] R. Schäfer, in: J.P. Liu, E. Fullerton, O. Gutfleisch, D.J. Sellmyer (Eds.), Nanoscale
Magnetic Materials and Applications, Springer, Dordrecht, 2009, p. 275.
[
14] W. Szmaja, W. Kozłowski, J. Balcerski, P.J. Kowalczyk, J. Grobelny, M.
Cichomski, J. Alloys Compd. 506 (2010) 526.