4
644 Macromolecules, Vol. 43, No. 10, 2010
Roth et al.
Conclusion
(18) Lutz, J.-F. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3459–
3
19) Heredia, K. L.; Grover, G. N.; Tao, L.; Maynard, H. D. Macro-
470.
The combination of pentafluorophenyl ester R end groups and
aminolysis of ω dithioesters in the presence of functional MTS
reagents allowed the synthesis of R,ω heterotelechelic poly[oligo-
(
molecules 2009, 42, 2360–2367.
(20) Roth, P. J.; Jochum, F. D.; Zentel, R.; Theato, P. Biomacromole-
cules 2010, 11, 238–244.
(
ethylene glycol) methacrylate] (POEGMA) in one-pot, one-step
(
21) Segui, F.; Qiu, X.-P.; Winnik, F. M. J. Polym. Sci., Part A: Polym.
Chem. 2008, 46, 314–326.
reactions. A library of polymers all with the same degree of
polymerization but with two end groups of variable sizes and
polarities could thus be obtained. These polymers were used to
systematically investigate the influence of the end groups on the
thermoresponsive behavior of POEGMA. As expected, the
introduction of one hydrophobic end group caused an LCST
decrease, with perfluorinated alkyl chains being more hydro-
phobic than regular alkyl chains. With two hydrophobic end
groups, the influences of both were additive. Oligo(ethylene
glycol) with a molecular weight 550 g/mol as one end group led
to an LCST very close to the literature value due to the chemical
similarity to the polymer. The influence of PEG was strong
enough to mask the influence of hydrophobic groups on the
opposite end of the polymer, thus stabilizing the LCST. Charged
end groups increased the LCST. In the combination of charged
with hydrophobic end groups, their influences compensated each
other, with the charge having a higher contribution. With two
large hydrophobic end groups, aggregates were formed at room
temperature, which led to LCST higher than to be expected from
the added influences of each individual end group. For perfluori-
nated alkyl chains, a chain with 13 F atoms did not phase
separate, while a chain with 17 F atoms did cause aggregation,
with the resulting system having an LCST in the same order than
with dissolved propyl end groups. The strongest LCST decrease
was found for rigid aromatic end groups, due to an incompat-
ibility with both water and the flexible polymer chain.
(
22) Roth, P. J.; Haase, M.; Basch ꢀe , T.; Theato, P.; Zentel, R. Macro-
molecules 2010, 43, 895–902.
(23) Inoue, S.; Kakikawa, H.; Nakadan, N.; Imabayashi, S.; Watanabe,
M. Langmuir 2009, 25, 2837–2841.
(24) Chung, J. E.; Yokoyama, M.; Aoyagi, T.; Sakurai, Y.; Okano, T.
J. Controlled Release 1998, 53, 119–130.
(
25) Furyk, S.; Zhang, Y.; Ortiz-Acosta, D.; Cremer, P. S.; Bergbreiter,
D. E. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 1492–1501.
26) Dormidontova, E. E. Macromolecules 2004, 37, 7747–7761.
(
(27) Narumi, A.; Fuchise, K.; Kakuchi, R.; Toda, A.; Satoh, T.;
Kawaguchi, S.; Sugiyama, K.; Hirao, A.; Kakuchi, T. Macromol.
Rapid Commun. 2008, 29, 1126–1133.
(
(
(
28) Jana, S.; Rannard, S. P.; Cooper, A. I. Chem. Commun. 2007, 2962–
964.
29) Huber, S.; Hutter, N.; Jordan, R. Colloid Polym. Sci. 2008, 286,
653–1661.
2
1
30) Winnik, F. M.; Davidson, A. R.; Hamer, G. K.; Kitano, H.
Macromolecules 1992, 25, 1876–1880.
(31) Yu, B.; Chan; Hoyle, C. E.; Lowe, A. B. J. Polym. Sci., Part A:
Polym. Chem. 2009, 47, 3544–3557.
(
(
32) Akiyama, H.; Tamaoki, N. Macromolecules 2007, 40, 5129–5132.
33) Maynard, H. D.; Heredia, K. L.; Li, R. C.; Parra, D. P.; V ꢀa zquez-
Dorbatt, V. J. Mater. Chem. 2007, 17, 4015–4017.
(
34) Boyer, C.; Bulmus, V.; Liu, J.; Davis, T. P.; Stenzel, M, H.; Barner-
Kowollik, C. J. Am. Chem. Soc. 2007, 129, 7145–7154.
(35) M
u€ llner, M.; Schallon, A.; Walther, A.; Freitag, R.; M u€ ller,
A. H. E. Biomacromolecules 2010, 11, 390–396.
36) Han, S.; Hagiwara, M.; Ishizone, T. Macromolecules 2003, 36,
312–8319.
37) Ishizone, T.; Seki, A.; Hagiwara, M.; Han, S.; Yokoyama, H.;
Oyane, A.; Deffieux, A.; Carlotti, S. Macromolecules 2008, 41,
(
(
8
Acknowledgment. The Institute of Biophysics of the Univer-
sity of Mainz is acknowledged for enabling the DLS measure-
ments. Julia Podszuweit, Lydia Braun, and Achim Reibel are
acknowledged for support with the experimental work.
2
963–2967.
(
(
38) Lutz, J.-F.; Hoth, A. Macromolecules 2006, 39, 893–896.
39) Lutz, J.-F.; Akdemir, O.; Hoth, A. J. Am. Chem. Soc. 2006, 128,
€
1
40) Yamamoto, S.-I.; Pietrasik, J.; Matyjaszewski, K. J. Polym. Sci.,
Part A: Polym. Chem. 2008, 46, 194–202.
€
41) Lutz, J.-F.; Weichenhan, K.; Akdemir, O.; Hoth, A. Macromole-
3046–13047.
(
(
References and Notes
(
(
(
(
(
(
(
(
(
1) Stayton, P. S.; Shimoboji, T.; Long, C.; Chilkoti, A.; Chen, G.;
Harris, J. M.; Hoffmann, A. S. Nature 1995, 378, 472–474.
2) Hoffmann, A. S.; Stayton, P. S. Macromol. Symp. 2004, 207, 139–
cules 2007, 40, 2503–2508.
(42) Yamamoto, S.-I.; Pietrasik, J.; Matyjaszewski, K. Macromolecules
2007, 40, 9348–9353.
151.
(43) Van Durme, K.; Van Mele, B.; Bernaerts, K. V.; Verdonck, B.; Du
Prez, F. E. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 451–469.
(44) Kujawa, P.; Tanaka, F.; Winnik, F. M. Macromolecules 2006, 39,
3048–3055.
(45) Ringsdorf, H.; Venzmer, J.; Winnik, F. M. Macromolecules 1991,
24, 1678–1686.
(46) Schild, H. G.; Tirrell, D. A. Langmuir 1991, 1319–1324.
(47) Roth, P. J.; Wiss, K. T.; Zentel, R.; Theato, P. Macromolecules
2008, 41, 8513–8519.
(48) Boyer, C.; Liu, J.; Bulmus, V.; Davis, T. P.; Barner-Kowollik, C.;
Stenzel, M. H. Macromolecules 2008, 41, 5641–5650.
(49) An, Z.; Tang, W.; Wu, M.; Jiao, Z.; Stucky, G. D. Chem. Commun.
2008, 6501–6503.
3) Kulkarni, S.; Schilli, C.; M u€ lle, A. H. E.; Hoffmann, A. S.; Stayton,
P. S. Bioconjugate Chem. 2004, 15, 747–753.
4) Kukkarni, S.; Schilli, C.; Grin, B.; M u€ ller, A. H. E.; Hoffmann,
A. S.; Stayton, P. S. Biomacromolecules 2006, 7, 2736–2741.
5) Li, C.; Gunari, N.; Fischer, K.; Janshoff, A.; Schmidt, M. Angew.
Chem., Int. Ed. 2004, 43, 1101–1104.
6) Yoshida, R.; Kaneko, Y.; Sakai, K.; Okano, T.; Sakurai, Y.; Bae,
Y. H.; Kim, S. W. J. Controlled Release 1994, 32, 97–102.
7) Ramkissoon-Ganorkar, C.; Liu, F.; Baudys, M.; Kim, S. W.
J. Controlled Release 1999, 59, 287–298.
8) Kim, J.; Serpe, M.; Lyon, L. A. Angew. Chem., Int. Ed. 2005, 44,
1
333–1336.
9) Feil, H.; Bae, Y. H.; Feijen, J.; Kim, S. W. J. Membr. Sci. 1991, 64,
83–294.
(50) Inglis, A. J.; Sinnwell, S.; Stenzel, M. H.; Barner-Kowollik, C.
Angew. Chem., Int. Ed. 2009, 48, 2411–2414.
2
(
(
(
(
10) Yakushiji, T.; Sakai, K.; Kikuchi, A.; Aoyagi, T.; Sakurai, Y.;
Okano, T. Anal. Chem. 1999, 6, 1125–1130.
11) Kujawa, P.; Segui, F.; Shaban, S.; Diab, C.; Okada, Y.; Tanaka, F.;
Winnik, F. M. Macromolecules 2006, 39, 314–348.
(51) Roth, P. J.; Kessler, D.; Zentel, R.; Theato, P. J. Polym. Sci., Part A
2009, 47, 3118–3130.
(52) Jochum, F. D.; Zur Borg, L.; Roth, P. J.; Theato, P. Macromole-
cules 2009, 42, 7854–7862.
12) Xia, Y.; Yin, X.; Burke, N. A. D.; St o€ ver, H. D. H. Macromolecules
(53) Theato, P.; Preis, E.; Brehmer, M.; Zentel, R. Macromol. Symp.
2001, 154, 257–267.
(54) Mongondry, P.; Bonnans-Plaisance, C.; Jean, M.; Tassin, J. F.
2
005, 38, 5937–5943.
13) Xia, Y.; Burke, N. A. D.; St o€ ver, H. D. H. Macromolecules 2006,
9, 2275–2283.
3
Macromol. Rapid Commun. 2003, 24, 681–685.
(
(
(
14) Schild, H. G. Prog. Polym. Sci. 1992, 17, 163–249.
(55) Jochum, F. D.; Theato, P. Polymer 2009, 50, 3079–3085.
(56) Grayson, E. J.; Ward, S. J.; Hall, A. L.; Rendle, P. M.; Gambin, D. P.;
Batsanov, A. S.; Davis, B. G. J. Org. Chem. 2005, 70, 9740–9754.
(57) Grayson, E. J.; Ward, S. J.; Hall, A. L.; Rendle, P. M.; Gambin,
D. P.; Batsanov, A. S.; Davis, B. G. J. Org. Chem. 2005, 70, 9740–
9754.
15) Schild, H. G.; Tirrell, D. A. J. Phys. Chem. 1990, 94, 4352–4356.
16) Ray, B.; Isobe, Y.; Morioka, K.; Habaue, S.; Okamoto, Y.;
Kamigaito, M.; Sawamoto, M. Macromolecules 2003, 36, 543.
17) Ray, B.; Isobe, Y.; Matsumoto, K.; Habaue, S.; Okamoto, Y.;
Kamigaito, M.; Sawamoto Macromolecules 2004, 37, 1702.
(