617-65-2Relevant articles and documents
Rational engineering ofAcinetobacter tandoiiglutamate dehydrogenase for asymmetric synthesis ofl-homoalanine through biocatalytic cascades
Diao, Shiqing,Jiang, Shuiqin,Liu, Yan,Sun, Yangyang,Wang, Hualei,Wang, Liuzhu,Wei, Dongzhi
, p. 4208 - 4215 (2021/06/30)
l-Homoalanine, a useful building block for the synthesis of several chiral drugs, is generally synthesized through biocascades using natural amino acids as cheap starting reactants. However, the addition of expensive external cofactors and the low efficiency of leucine dehydrogenases towards the intermediate 2-ketobutyric acid are two major challenges in industrial applications. Herein, a dual cofactor-dependent glutamate dehydrogenase fromAcinetobacter tandoii(AtGluDH) was identified to help make full use of the intracellular pool of cofactors when using whole-cell catalysis. Through reconstruction of the hydrophobic network between the enzyme and the terminal methyl group of the substrate 2-ketobutyric acid, the strict substrate specificity ofAtGluDH towards α-ketoglutarate was successfully changed, and the activity obtained by the most effective mutant (K76L/T180C) was 17.2 times higher than that of the wild-type protein. A three-enzyme co-expression system was successfully constructed in order to help release the mass transfer restriction. Using 1 Ml-threonine, which is close to the solubility limit, we obtained a 99.9% yield ofl-homoalanine in only 3.5 h without adding external coenzymes to the cascade, giving 99.9% ee and a 29.2 g L?1h?1space-time yield. Additionally, the activities of the engineeredAtGluDH towards some other hydrophobic amino acids were also improved to 1.1-11.2 fold. Therefore, the engineering design of some dual cofactor-dependent GluDHs could not only eliminate the low catalytic activity of unnatural substrates but also enhance the cofactor utilization efficiency of these enzymes in industrial applications.
Mechanistic insight into metal ion-catalyzed transamination
Mayer, Robert J.,Kaur, Harpreet,Rauscher, Sophia A.,Moran, Joseph
supporting information, p. 19099 - 19111 (2021/11/22)
Several classes of biological reactions that are mediated by an enzyme and a co-factor can occur, to a slower extent, not only without the enzyme but even without the co-factor, under catalysis by metal ions. This observation has led to the proposal that metabolic pathways progressively evolved from using inorganic catalysts to using organocatalysts of increasing complexity. Transamination, the biological process by which ammonia is transferred between amino acids and α-keto acids, has a mechanism that has been well studied under enzyme/co-factor catalysis and under co-factor catalysis, but the metal ion-catalyzed variant was generally studied mostly at high temperatures (70-100 °C), and the details of its mechanism remained unclear. Here, we investigate which metal ions catalyze transamination under conditions relevant to biology (pH 7, 20-50 °C) and study the mechanism in detail. Cu2+, Ni2+, Co2+, and V5+ were identified as the most active metal ions under these constraints. Kinetic, stereochemical, and computational studies illuminate the mechanism of the reaction. Cu2+ and Co2+ are found to predominantly speed up the reaction by stabilizing a key imine intermediate. V5+ is found to accelerate the reaction by increasing the acidity of the bound imine. Ni2+ is found to do both to a limited extent. These results show that direct metal ion-catalyzed amino group transfer is highly favored even in the absence of co-factors or protein catalysts under biologically compatible reaction conditions.
Electrosynthesis of amino acids from biomass-derivable acids on titanium dioxide
Fukushima, Takashi,Yamauchi, Miho
supporting information, p. 14721 - 14724 (2019/12/24)
Seven amino acids were electrochemically synthesized from biomass-derivable α-keto acids and NH2OH with faradaic efficiencies (FEs) of 77-99% using an earth-Abundant TiO2 catalyst. Furthermore, we newly constructed a flow-Type electrochemical reactor, named a "polymer electrolyte amino acid electrosynthesis cell", and achieved continuous production of alanine with an FE of 77%.
Direct Synthesis of Free α-Amino Acids by Telescoping Three-Step Process from 1,2-Diols
Inada, Haruki,Shibuya, Masatoshi,Yamamoto, Yoshihiko
supporting information, p. 709 - 713 (2019/01/25)
A practical telescoping three-step process for the syntheses of α-amino acids from the corresponding 1,2-diols has been developed. This process enables the direct synthesis of free α-amino acids without any protection/deprotection step. This method was also effective for the preparation of a 15N-labeled α-amino acid. 1,2-Diols bearing α,β-unsaturated ester moieties afforded bicyclic α-amino acids through intramolecular [3 + 2] cycloadditions. A preliminary study suggests that the resultant α-amino acids are resolvable by aminoacylases with almost complete selectivity.
A metagenomics approach for new biocatalyst discovery: Application to transaminases and the synthesis of allylic amines
Baud, Damien,Jeffries, Jack W. E.,Moody, Thomas S.,Ward, John M.,Hailes, Helen C.
, p. 1134 - 1143 (2017/08/14)
Transaminase enzymes have significant potential for the sustainable synthesis of amines using mild aqueous reaction conditions. Here a metagenomics mining strategy has been used for new transaminase enzyme discovery. Starting from oral cavity microbiome samples, DNA sequencing and bioinformatics analyses were performed. Subsequent in silico mining of a library of contiguous reads built from the sequencing data identified 11 putative Class III transaminases which were cloned and overexpressed. Several screening protocols were used and three enzymes selected of interest due to activities towards substrates covering a wide structural diversity. Transamination of functionalized cinnamaldehydes was then investigated for the production of valuable amine building blocks.
Efficient Synthesis of CN2097 and RC7 and Their Analogs
-
Page/Page column, (2015/02/19)
Synthesized macrocyclic ligand, CN2097 and analogs, optimized with systemic structure modifications to develop the compounds with lower molecular weights and less peptidic characters.
Biocatalytic asymmetric synthesis of unnatural amino acids through the cascade transfer of amino groups from primary amines onto keto acids
Park, Eul-Soo,Dong, Joo-Young,Shin, Jong-Shik
, p. 3538 - 3542 (2014/01/06)
Flee to the hills: An unfavorable equilibrium in the amino group transfer between amino acids and keto acids catalyzed by α-transaminases was successfully overcome by coupling with a ω-transaminase reaction as an equilibrium shifter, leading to efficient asymmetric synthesis of diverse unnatural amino acids, including L-tert-leucine and D-phenylglycine. Copyright
Photocatalytic reversible amination of α-keto acids on a ZnS surface: Implications for the prebiotic metabolism
Wang, Wei,Li, Qiliang,Yang, Bin,Liu, Xiaoyang,Yang, Yanqiang,Su, Wenhui
supporting information; experimental part, p. 2146 - 2148 (2012/03/26)
We report the enzyme-like reversible amination of four intermediates pertinent to the reductive tricarboxylic acid cycle on a photo-irradiated surface of mineral sphalerite (ZnS). Given its prevalence in the waters of early Earth, we suggest that the mineral-based photochemistry might have catalyzed the homeostasis of prebiotic metabolic systems.
Conductometric method for the rapid characterization of the substrate specificity of amine-transaminases
Schaetzle, Sebastian,Hoehne, Matthias,Robins, Karen,Bornscheuer, Uwe T.
body text, p. 2082 - 2086 (2010/08/20)
Amine-transaminases (ATAs, ω-transaminases, ω-TA) are PLP-dependent enzymes that catalyze amino group transfer reactions. In contrast to the widespread and wellknown amino acid-transaminases, ATAs are able to convert substrates lacking an a-carboxylic functional group. They have gained increased attention because of their potential for the asymmetric synthesis of optically active amines, which are frequently used as building blocks for the preparation of numerous pharmaceuticals. Having already introduced a fast kinetic assay based on the conversion of the model substrate α-methylbenzylamine for the characterization of the amino acceptor specificity, we now report on a kinetic conductivity assay for investigating the amino donor specificity of a given ATA. The course of an ATA-catalyzed reaction can be followed conductometrically since the conducting substrates, a positively charged amine and a negatively charged keto acid, are converted to nonconducting products, a noncharged ketone and a zwitterionic amino acid. The decrease of conductivity for the investigated reaction systems were determined to be 33-52 μS mM-1. In contrast to other ATA-assays previously described, with this approach all transamination reactions between any amine and any keto add can be monitored without the need for an additional enzyme or staining solutions. The assay was used for the characterization of a ATA from Rhodobacter sphaeroides, and the data obtained were in excellent agreement with gas chromatography analysis.
Competing pathways in the photo-Favorskii rearrangement and release of esters: Studies on fluorinated p-hydroxyphenacyl-caged GABA and glutamate phototriggers
Stensrud, Kenneth,Noh, Jihyun,Kandler, Karl,Wirz, Jakob,Heger, Dominik,Givens, Richard S.
scheme or table, p. 5219 - 5227 (2009/12/08)
(Chemical Equation Presented) Three new trifluoromethylated p-hydroxyphenacyl (pHP)-caged γ-aminobutyric acid (GABA) and glutamate (Glu) derivatives have been examined for their efficacy as photoremovable protecting groups in aqueous solution. Through the