495-18-1Relevant articles and documents
Boronic Acid-Catalyzed, Highly Enantioselective Aza-Michael Additions of Hydroxamic Acid to Quinone Imine Ketals
Hashimoto, Takuya,Gálvez, Alberto Osuna,Maruoka, Keiji
, p. 16016 - 16019 (2015)
Boronic acid is one of the most versatile organic molecules in chemistry. Its uses include organic reactions, molecular recognition, assembly, and even medicine. While boronic acid catalysis, which utilizes an inherent catalytic property, has become an important research objective, it still lags far behind other boronic acid chemistries. Here, we report our discovery of a new boronic acid catalysis that enables the aza-Michael addition of hydroxamic acid to quinone imine ketals. By using 3-borono-BINOL as a chiral boronic acid catalyst, this reaction could be implemented in a highly enantioselective manner, paving the way to densely functionalized cyclohexanes.
Hydroxamate represents a versatile zinc binding group for the development of new carbonic anhydrase inhibitors
Di Fiore, Anna,Maresca, Alfonso,Supuran, Claudiu T.,De Simone, Giuseppina
, p. 8838 - 8840 (2012)
Hydroxamates (R-CONHOH) have been scarcely investigated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs). An inhibition/structural study of PhCONHOH is reported against all human isoforms. Comparing aliphatic (R = Me and CF3) and aromatic (R = Ph) hydroxamates as CAIs, we prove that CONHOH is a versatile zinc binding group. Depending on the nature of the R moiety, it can adopt different coordination modes to the catalytic ion within the CA active site.
Large Stereoelectronic Effect in 1,3-Dehydrohalogenation to form a 1,3-Dipole
Hegarty, Anthony F.,Mullane, Maria
, p. 229 - 230 (1984)
The E-hydroximidoyl chloride (5), prepared on photoisomerisation of (1) to (2) and by subsequent hydrolysis, is shown to lose HCl to give benzonitrile oxide 6*107 fold slower than the Z-isomer (3).
Synthesis, structure and magnetic properties of phenylhydroxamate-based coordination clusters
Tirfoin, Rmi,Chamoreau, Lise-Marie,Li, Yanling,Fleury, Benoit,Lisnard, Laurent,Journaux, Yves
, p. 16805 - 16817 (2014)
The strategic recombination of preformed coordination clusters in the presence of polymodal bridging ligands has successfully led to the characterisation of five new compounds of structural and magnetic interest. Indeed using the dinuclear complex [M2(H2O)(piv)4(Hpiv)4] (M = Co, Ni; Hpiv = pivalic acid) as starting material and reacting it with phenylhydroxamic acid (H2pha) has yielded the four tetrametallic coordination clusters [Co4(Hpha)2(piv)6(Hpiv)4] (1), [Ni4(Hpha)2(piv)6(Hpiv)2(DMF)2] (2), [Co4(Hpha)2(piv)6(EtOH)2(H2O)2] (3), [Ni4(Hpha)2(piv)6(EtOH)2(H2O)2] (4) and the hexanuclear complex [Co6(Hpha)4(piv)8(EtOH)2]·EtOH (5). All the compounds have been structurally characterised revealing a particular binding mode for the hydroxamate ligand. The study of their magnetic properties has been performed and the modelling of these properties has been done using the appropriate hamiltonians for each compound. The experimental data and their modelling show non-zero spin ground states for compounds 4 and 5.
Suicide nucleophilic attack: Reactions of benzohydroxamate anion with bis(2,4-dinitrophenyl) phosphate
Orth, Elisa S.,Da Silva, Pedro L. F.,Mello, Renata S.,Bunton, Clifford A.,Milagre, Humberto M. S.,Eberlin, Marcos N.,Fiedler, Haidi D.,Nome, Faruk
, p. 5011 - 5016 (2009)
(Chemical Equation Presented) The reaction between the benzohydroxamate anion (BHO-) and bis(2,4-dinitrophenyl)phosphate (BDNPP) has been examined kinetically, and the products were characterized by mass and NMR spectroscopy. The nucleophilic attack of BHO- follows two reaction paths: (i) at phosphorus, giving an unstable intermediate that undergoes a Lossen rearrangement to phenyl isocyanate, aniline, diphenylurea, and O-phenylcarbamyl benzohydroxamate; and (ii) on the aromatic carbon, giving an intermediate that was detected but slowly decomposes to aniline and 2,4-dinitrophenol. Thus, the benzohydroxamate anion can be considered a self-destructive molecular scissor since it reacts and loses its nucleophilic ability.
Fast and Cysteine-Specific Modification of Peptides, Proteins and Bacteriophage Using Chlorooximes
Chen, Fa-Jie,Zheng, Mengmeng,Nobile, Vincent,Gao, Jianmin
, (2022/03/15)
This work reports a novel chlorooxime mediated modification of native peptides and proteins under physiologic conditions. This method features fast reaction kinetics (apparent k2=306±4 M?1s?1 for GSH) and exquisite selectivity for cysteine residues. This cysteine conjugation reaction can be carried out with just single-digit micromolar concentrations of the labeling reagent. The conjugates show high stability towards acid, base, and external thiol nucleophiles. A nitrile oxide species generated in situ is likely involved as the key intermediate. Furthermore, a bis-chlorooxime reagent is synthesized to enable facile Cys-Cys stapling in native peptides and proteins. This highly efficient cysteine conjugation and stapling was further implemented on bacteriophage to construct chemically modified phage libraries.
Silver-Catalyzed Acyl Nitrene Transfer Reactions Involving Dioxazolones: Direct Assembly of N-Acylureas
Yang, Zheng-Lin,Xu, Xin-Liang,Chen, Xue-Rong,Mao, Zhi-Feng,Zhou, Yi-Feng
supporting information, p. 648 - 652 (2020/12/21)
Dioxazolones and isocyanides are useful synthetic building blocks, and have attracted significant attention from researchers. However, the silver-catalyzed nitrene transfer reaction of dioxazolones has not been investigated to date. Herein, a silver-catalyzed acyl nitrene transfer reaction involving dioxazolones, isocyanides, and water was realized in the presence of Ag2O to afford a series of N-acylureas in moderate to good yields.
Photochemical Activation of Aromatic Aldehydes: Synthesis of Amides, Hydroxamic Acids and Esters
Nikitas, Nikolaos F.,Apostolopoulou, Mary K.,Skolia, Elpida,Tsoukaki, Anna,Kokotos, Christoforos G.
, p. 7915 - 7922 (2021/05/03)
A cheap, facile and metal-free photochemical protocol for the activation of aromatic aldehydes has been developed. Utilizing thioxanthen-9-one as the photocatalyst and cheap household lamps as the light source, a variety of aromatic aldehydes have been activated and subsequently converted in a one-pot reaction into amides, hydroxamic acids and esters in good to high yields. The applicability of this method was highlighted in the synthesis of Moclobemide, a drug against depression and social anxiety. Extended and detailed mechanistic studies have been conducted, in order to determine a plausible mechanism for the reaction.
Palladium-Catalyzed 5-exo-dig Cyclization Cascade, Sequential Amination/Etherification for Stereoselective Construction of 3-Methyleneindolinones
Zuo, Youpeng,He, Xinwei,Tang, Qiang,Hu, Wangcheng,Zhou, Tongtong,Hu, Wenbo,Shang, Yongjia
, p. 2117 - 2123 (2020/12/22)
An cascade intramolecular 5-exo-dig cyclization of N-(2-iodophenyl)propiolamides and sequential amination/etherification (with N-hydroxybenzamides, phenyl hydroxycarbamate) protocol for the synthesis of amino- and phenoxy-substituted 3-methyleneindolinones using unexpensive Pd(PPh3)4 as catalyst has been developed. The protocol enables the assembly of structurally important oxindole cores featuring moderate functional group tolerance (particularly the halo group), affording a broad spectrum of products with diverse substituents in good to excellent yields. (Figure presented.).
Hydroxamates as a potent skeleton for the development of metallo-β-lactamase inhibitors
Chen, Cheng,Chigan, Jia-Zhu,Ding, Huan-Huan,Li, Jia-Qi,Liu, Lu,Xu, Yin-Sui,Yang, Ke-Wu
, (2021/12/14)
Bacterial resistance caused by metallo-β-lactamases (MβLs) has become an emerging public health threat, and the development of MβLs inhibitor is an effective way to overcome the resistance. In this study, thirteen novel O-aryloxycarbonyl hydroxamates were constructed and assayed against MβLs. The obtained molecules specifically inhibited imipenemase-1 (IMP-1) and New Delhi metallo-β-lactamase-1, exhibiting an IC50 value in the range of 0.10–18.42 and 0.23–22.33?μM, respectively. The hydroxamate 5 was found to be the most potent inhibitor, with an IC50 of 0.1 and 0.23?μM using meropenem and cefazolin as substrates. ICP-MS analysis showed that 5 did not coordinate to the Zn(II) ions at the active site of IMP-1, while the rapid dilution, thermal shift and MALDI-TOF assays revealed that the hydroxamate formed a covalent bond with the enzyme. Cytotoxicity assays indicated that the hydroxamates have low toxicity in MCF-7 cells. This work provided a potent scaffold for the development of MβLs inhibitors.