Disubstituted Azidotetrazoles as Energetic Compounds
FULL PAPER
>CH ); 13C NMR (CD3CN): d=153.8, 152.1 ppm; MS (electrospray):
[6] a) S. P. Makarov, A. Y. Yakubovich, V. A. Ginsburg, A. S. Filatov,
M. A. Englin, N. F. Privezentseva, T. Y. Nikiforova, Dokl. Akad.
Nauk SSSR 1961, 141, 357–360; b) A. H. Dinwoodie, R. N. Haszel-
dine, J. Chem. Soc. 1965, 2266–2268; c) S. P. Makarov, A. S. Filatov,
A. Y. Yakubovich, Zh. Obshch. Khim. 1967, 37, 158–163; d) A. S.
Filatov, S. P. Makarov, A. Y. Yakubovich, Zh. Obshch. Khim. 1967,
37, 837–841; e) S. P. Makarov, A. Y. Yakubovich, A. S. Filatov,
M. A. E’nglin, T. Y. Nikiforova, Zh. Obshch. Khim. 1968, 38, 709–
715; f) V. A. Ginsburg, M. N. Vasil’eva, Zh. Org. Khim. 1973, 9,
2028–2031; g) A. Sekiya, T. Umemoto, Chem. Lett. 1982, 1519–
1520; h) T. Umemoto, O. Miyano, J. Fluorine Chem. 1983, 22, 91–
2964; j) G. Bolte, A. Haas, J. Fluorine Chem. 1984, 26, 69–76.
[7] a) V. A. Ginsburg, A. Y. Yakubovich, A. S. Filatov, V. A. Shpanskii,
E. S. Vlasova, G. E. Zelenin, L. F. Sergienko, L. L. Martynova, S. P.
Makarov, Dokl. Akad. Nauk SSSR 1962, 142, 88–91; b) V. A. Gins-
burg, A. Y. Yakubovich, A. S. Filatov, G. E. Zelenin, S. P. Makarov,
V. A. Shpanskii, G. P. Kotel’nikova, L. F. Sergienko, L. L. Martyno-
va, Dokl. Akad. Nauk SSSR 1962, 142, 354–357; c) A. S. Filatov,
S. P. Makarov, A. Y. Yakubovich, Zh. Obshch. Khim. 1968, 38, 33–
35; d) A. S. Filatov, S. P. Makarov, A. Y. Yakubovich, Zh. Obshch.
Khim. 1968, 38, 35–38; e) A. S. Filatov, S. P. Makarov, A. Y. Yaku-
bovich, Zh. Obshch. Khim. 1968, 38, 40–42; f) A. S. Filatov, S. P.
Makarov, A. Y. Yakubovich, Zh. Obshch. Khim. 1968, 38, 247–249;
g) P. S. Engel, W.-X. Wu, J. Org. Chem. 1990, 55, 1503–1505.
[8] T. Abe, G.-H. Tao, Y.-H. Joo, Y. Huang, B. Twamley, J. M. Shreeve,
47, 7087–7090.
ꢀ
C4H2N16, 274.7 [M+]; IR (KBr): n˜ =962, 1082, 1165, 1325, 1427, 1442,
1540 (s; asACHTUNGTRENNUNG
(C=N)), 2174 cmꢀ1 (s; as(N3)). ii) With two equivalents of NaN3
to give 14: Similarly, into a 50 mL flask was placed a solution of 2c in
MeOH (0.75 mL), which was prepared by the reaction of 1c (0.069 g,
1.14 mmol) with CF3NO, acetonitrile (3 mL), and NaN3 (0.147 g,
2.28 mmol). The solution was stirred at 08C for 24 h to give a turbid
yellow solution. After the reaction, the mixture was filtered, washed with
water (3ꢃ1 mL) and dried to give 14 (0.042 g, 0.15 mmol) as a white
powder. Yield 13%.
Reaction of 1,4-bis(trifluoromethylazo)butane (2d) with four equivalents
of NaN3: N,N’-bis(5-azido-1H-tetrazol-1-yl)-1,4-diiminobutane (15):
White powder; Yield: 0.118 g, 66%; 1H NMR (CDCl3): d=8.74 (m, 1H;
CH), 2.97 ppm (m, 2H; CH2); 13C NMR (CDCl3): d=164.2, 149.9,
28.7 ppm; MS (electrospray): C6H6N16, 302.9 [M+]; IR (KBr): n˜ =2176 (s;
as(N3)), 1543 (s; asACHTUNGTRENNUNG .
(C=N)), 1450, 1359, 1242, 1176 cmꢀ1
Reaction of 1,5-bis(trifluoromethylazo)pentane (2e) with four equiva-
lents of NaN3:N,N’-bis(5-azido-1H-tetrazol-1-yl)-1,5-diiminopentane (16):
White powder; Yield: 0.126 g, 87%; 1H NMR (CDCl3): d=8.68 (t, 3J=
5.0 Hz, 2H; CH), 2.69 (td, 3J=5.3 Hz, 3J=5.0 Hz, 4H; CH2), 2.06 ppm
(quin, 3J=7.3 Hz, 2H; CH2); 13C NMR (CDCl3): d=151.2, 149.8, 165.6,
118.1, 32.6, 21.3 ppm; IR (KBr): n˜ =1171, 1243, 1359, 1451, 1559 (s;
asACHTUNGRTEN(NUNG C=
N), 2163 (s; as(N3)), 2180 cmꢀ1
.
Reaction of 1,5-bis(trifluoromethylazo)pentane (2e) with four equiva-
lents of Na15N3: Into a 50 mL flask was placed a solution of 2e in MeOH
(0.5 mL), which was prepared by the reaction of 1e (0.019 g, 0.18 mmol),
acetonitrile (2.5 mL), and Na15N3 (45.5 mg, 0.67 mmol). The solution was
stirred at 08C for 12 h, and then at room temperature for two days. After
the reaction, the solution was filtered to give a 15N-labeled azidotetrazole
15N-16: White solid; yield: 0.045 g (0.14 mmol). Yield 77%.
[9] This compound has been reported to be extremely shock sensitive
and explodes on rubbing with spatula. See ref. [3a].
[10] It is reported that 2c was successfully isolated and distilled (b. p.
998C). See ref. [6d].
[11] B. J. Liddle, J. R. Gardinier, J. Org. Chem. 2007, 72, 9794–9797, and
references therein.
[12] It is reported that some aliphatic trifluoromethylazocarboxylic acids
rearrange to trifluoromethylhydrazonocarboxylic acid by a proton
shift during distillation. See ref. [6f].
[13] CCDC-710866 (10) and CCDC-710867 (13) contain the supplemen-
tary crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data center
Acknowledgements
The authors gratefully acknowledge the support of AGFOSR (F49620–
03–1–0209), NSF (CHE0315275), and ONR (N00014–02–1–0600). The
Bruker (Siemens)SMART APEX diffraction facility was established at
the University of Idaho with the assistance of the NSF-EPSCoR program
and the M. J. Murdock Charitable Trust, Vancouver, WA.
[16] Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomer-
y, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyen-
gar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J.
Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.
Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cio-
slowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaro-
mi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wall-
ingford CT, 2004.
[1] a) R. P. Singh, R. D. Verma, D. T. Meshri, J. M. Shreeve, Angew.
Chem. 2006, 118, 3664–3682; Angew. Chem. Int. Ed. 2006, 45, 3584–
Singh, H. Gao, R. D. Verma, D. T. Meshri, J. M. Shreeve in High
Energy Density Materials (Ed.: T. M. Klapçtke), Springer, Heidel-
berg, 2007, pp. 35–83; d) T. M. Klapçtke in High Energy Density
Materials (Ed.: T. M. Klapçtke), Springer, Heidelberg, 2007, pp. 85–
122; e) R. N. Butler in Comprehensive Heterocyclic Chemistry II. A
Review of the Literature 1982–1985, Vol. 4 (Eds.: A. R. Katritzky,
C. W. Rees, E. F. Scriven), Pergamon, New York, 1996, pp. 897–904.
[2] a) M. A. Hiskey, D. E. Chavez, D. L. Naud, S. F. Son, H. L. Bergh-
out, C. A. Bolme, Proc. Int. Pyrotech. Semin. 2000, 27, 3–14;
b) T. M. Klapçtke, J. Stierstorfer, Eur. J. Inorg. Chem. 2008, 4055–
4062.
[3] a) J. C. Kauer, W. A. Sheppard, J. Org. Chem. 1967, 32, 3580–3592;
b) J. A. C. Alves, R. A. W. Johnstone, Synth. Commun. 1997, 27,
2645–2650.
[17] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Mole-
cules, Oxford University Press; New York, 1989.
[4] W. Friederich, K. Flick, US 2179783, 1939 [Chem. Abstr. 1940, 34,
11610].
[18] a) C. M. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618–622; b) J. A.
Pople, J. S. Binkely, R. Seeger, Int. J. Quantum Chem. 1976, 10, 1–
19.
Boatz, J. Phys. Chem. A 2005, 109, 7285–7295.
[5] a) A. Hammerl, T. M. Klapçtke, Inorg. Chem. 2002, 41, 906–912;
b) A. Hammerl, T. M. Klapçtke, H. Nçth, M. Warchhold, G. Holl,
Propellants Explos. Pyrotech. 2003, 28, 165–173; c) A. Hammerl,
T. M. Klapçtke, P. Mayer, J. J. Weigand, Propellants Explos. Pyro-
tech. 2005, 30, 17–26; J. Stierstorfer, T. M. Klapçtke, A. Hammerl,
Chem. Eur. J. 2009, 15, 4102 – 4110
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4109