5158
S. Pottabathula, B. Royo / Tetrahedron Letters 53 (2012) 5156–5158
Table 3 (continued)
Acknowledgments
Entry Amine
Carbodiimide
iPrN = C = NiPr
Product
Yieldb
(%)
The authors thank FCT of Portugal for financial support, POCI
2010, and FEDER through project PTDC/QUI-QUI/110349/2009.
S.P. thanks FCT for grant SFRH/BDP/68720/2010. We thank FCT
for REDE/1504/REM/2005 and REDE/1517/RMN/2005. The authors
thank João M.S. Cardoso (from our group at ITQB) for preparation of
the iron complex (Cp⁄-NHC)Fe(CO)I.
HN iPr
HN iPr
NH2
N
N
N
8
92
95
HN Cy
HN Cy
NH2
Cl
N
N
Supplementary data
9
CyN = C = NCy
N
Supplementary data associated with this article can be found,
Cl
N
HN Cy
HN Cy
NH2
NH2
N
10
CyN = C = NCy
iPrN = C = NiPr
96
94
N
N
N
References and notes
HN iPr
HN iPr
N
1. (a) Guilman, A.; Gododman, L. S.; Rall, T. W. The Pharmacological Basis of
Therapeutics, 7th Ed.; Pergamon Press: New York, 1990. pp 899; (b) Manimala,
J. C.; Anslyn, E. V. Eur. J. Org. Chem. 2002, 67, 3909–3922; (c) Rodriguez, F.;
Rozas, I.; Ortega, J. E.; Erdozain, A. M.; Meana, J. J.; Callado, L. F. J. Med. Chem.
2009, 52, 601–609; (d) Katritzky, A. R.; Rogovoy, B. V. Arkivoc 2005, 49–87.
2. (a) Mori, A.; Cohen, B. D.; Lowenthal, A. Guanidines: Historical, Biological,
Biochemical and Clinical Aspects of the Naturally Occurring Guanidino Compounds,
Ed; Plenum Press: New York, 1985; (b) More, A.; Cohen, B. D.; Koide, H. Further
Explorations of the Biological and Clinical Significance of Guanidino Compounds,
Ed; Plenum Press: New York, 1987.
N
N
11
N
N
a
Reaction conditions: amine (1 mmol), carbodiimide (1.2 mmol), Fe(OAc)2
(5 mol %), and toluene (2 mL) at 140 °C for 5 h.
b
Yield of isolated product.
Reaction performed in a pressure tube.
c
3. (a) Ishikawa, T.; Kumamoto, T. Synthesis 2006, 5, 737–753; (b) Kovacevik, B.;
Maksic, Z. B. Org. Lett. 2001, 3, 1523–1526; (c) Ishikawa, T.; Isobe, T. Chem. Eur.
J. 2002, 8, 552–557; (d) Bailey, P. J.; Pace, S. Coord. Chem. Rev. 2001, 214, 91–
141; (e) Berry, J. F.; Cotton, F. A.; Ibragimov, S. A.; Murillo, C. A.; Wang, X. Inorg.
Chem. 2005, 44, 6129–6137.
4. Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2003, 125, 8100–
8101.
5. (a) Montilla, F.; del Rio, D.; Pastor, A.; Galindo, A. Organometallics 2006, 25,
4996–5002; (b) Montilla, F.; Pastor, A.; Galindo, A. J. Organomet. Chem. 2004,
689, 993–996.
the addition reaction of the asymmetrical carbodiimide 1-tert-
butyl-3-ethylcarbodiimide. Its reaction with 4-methoxyaniline
gave 55% yield of the corresponding guanidine after 5 h of reaction
at 130 °C.
Notably, the iron catalytic system demonstrated excellent per-
formance with more challenging substrates such as secondary cyc-
lic and heterocyclic amines. These results are summarized in Table
3. All substrates are fully converted into the corresponding guani-
dines essentially in quantitative yields (Table 3, entries 1–4 and
7–11). The less basic amino-heterocyclic 2-amino-5-chloropyri-
dine was also fully converted to the corresponding guanidine
(Table 3, entry 9). However, the addition of N-methylaniline to
N,N0-dicyclohexyl- and N,N0-diisopropyl-carbodiimide gave lower
yields of the corresponding guianidines (Table 3, entries 5 and 6).
In conclusion, we have demonstrated that Fe(OAc)2 is a versatile
and efficient catalyst for the guanylation of amines. The main fea-
tures of this catalyst are: (i) its low price and availability; (ii) its
lower toxicity compared to other aluminum-, lithium, and lantha-
nide-based catalysts used for this reaction; (iii) its tolerance to air
and moisture; (iv) its high efficiency, broad application, and its tol-
erance to many functional groups. In addition, remarkable advan-
tages of this protocol include high isolated yields, clean reactions,
and easy work-up.
6. (a) Zhang, W. X.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc. 2005, 127, 16788–
16789; (b) Zhang, W. X.; Nishiura, M.; Hou, Z. Chem. Eur. J. 2007, 13, 4037–
4051; (c) Zhang, W. X.; Nishiura, M.; Hou, Z. Synlett 2006, 1213–1216.
7. (a) Li, Q.; Wang, S.; Zhou, S.; Yang, G.; Zhu, X.; Liu, Y. J. Org. Chem. 2007, 72,
6763–6767; (b) Zhou, S. L.; Wang, S.; Yang, G.; Li, Q.; Zhang, L.; Yao, Z.; Zhou, Z.;
Song, H. Organometallics 2007, 26, 3755–3761; (c) Cao, Y.; Du, Z.; Li, W.; Zhang,
Y.; Xu, F.; Shen, Q. Inorg. Chem. 2011, 50, 3729–3737.
´
8. Ong, T. G.; OBrien, J. S.; Korobkov, I.; Richeson, D. S. Organometallics 2006, 25,
4728–4730.
9. Shen, H.; Chan, H. S.; Xie, Z. W. Organometallics 2006, 25, 5515–5517.
10. Alonso-Moreno, C.; Carrillo-Hermosilla, F.; Garcés, A.; Otero, A.; López-Solera,
I.; Rodríguez, A. M.; Antiñolo, A. Organometallics 2010, 29, 2789–2795.
11. Zhang, W. X.; Li, D.; Wang, Z.; Xi, Z. Organometallics 2009, 28, 882–887.
12. Li, D.; Guang, J.; Zhang, W.-X.; Wang, Y.; Xi, Z. Org. Biomol. Chem. 2010, 8, 1816–
1820.
13. (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217–6254; (b)
Plietker, B. Iron Catalysis in Organic Chemistry, Ed; Wiley-VCH: Weinheim, 2008.
14. Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317–3321.
15. Kandepi, V. V. K. M.; Cardoso, J. M. S.; Peris, E.; Royo, B. Organometallics 2010,
29, 2777–2782.
16. Cardoso, J. M. S.; Royo, B. Chem. Commun. 2012, 48, 4944–4946.