Communication
[5] X. Chen, X.-S. Hao, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006, 128,
6790–6791.
H functionalization of enamines by using simple thiols. The re-
action was realized by adding an external phosphine ligand
to prevent poisoning of the palladium catalyst by the sulfuric
reagents. The results reveal the possible coexistence of transi-
tion metals and reactive thiols in the area of C–H functionaliza-
tion. Furthermore, the formed cysteine-type products possess
the potential to be used in the area of native chemical ligation
in biological chemistry. Research in this direction and the appli-
cation of this method for the synthesis of ECT-743 are in
progress in our group, and the results will be reported in due
course.
[6] a) R. Kumar, Saima, A. Shard, N. H. Andhare, Richa, A. K. Sinha, Angew.
Chem. Int. Ed. 2015, 54, 828–832; Angew. Chem. 2015, 127, 842–846; b)
S.-Y. Yan, Y.-J. Liu, B. Liu, Y.-H. Liu, B.-F. Shi, X. Chen, X.-S. Hao, Chem.
Commun. 2015, 51, 4069–4072; c) M. R. Monaco, S. Prévost, B. List, J. Am.
Chem. Soc. 2014, 136, 16982–16985; d) S. E. Denmark, S. R. Matthew, P.
Webster, H. Wang, J. Am. Chem. Soc. 2014, 136, 13016–13028; e) D. Han,
Z. Li, R. Fan, Org. Lett. 2014, 16, 6508–6501; f) R. Frei, M. D. Wodrich, D. P.
Hari, P.-A. Borin, C. Chauvier, J. Waser, J. Am. Chem. Soc. 2014, 136,
16563–16573; g) Y. Yang, W. Hou, L. Qin, J. Du, H. Feng, B. Zhou, Y. Li,
Chem. Eur. J. 2014, 20, 416–420; h) X. Jia, L. Yu, J. Liu, Q. Xu, M. Sickert,
L. Chen, L. Mark, Green Chem. 2014, 16, 3444–3449; i) L. D. Tran, I. Popov,
O. Daugulis, J. Am. Chem. Soc. 2012, 134, 18237–18240; j) L. Chu, X. Yue,
F.-L. Qing, Org. Lett. 2010, 12, 1644–1647; k) S. Zhang, P. Qian, M. Zhang,
M. Hu, J. Cheng, J. Org. Chem. 2010, 75, 6732–6735.
[7] a) K. Yang, Y. Wang, X. Chen, A. A. Kadi, H.-K. Fun, H. Sun, Y. Zhang, H.
Lu, Chem. Commun. 2015, 51, 3582–3585; b) S.-Y. Yan, Y.-J. Liu, B. Liu, Y.-
H. Liu, B.-F. Shi, Chem. Commun. 2015, 51, 4069–4072.
[8] a) X. Ye, J. L. Petersen, X. Shi, Chem. Commun. 2015, 51, 7863–7866; b)
S.-Y. Yan, Y.-J. Liu, B. Liu, Y.-H. Liu, Z.-Z. Zhang, B.-F. Shi, Chem. Commun.
2015, 51, 7341–7344; c) C. Lin, W. Yu, J. Yao, B. Wang, Z. Liu, Y. Zhang,
Org. Lett. 2015, 17, 1340–1343.
Experimental Section
Synthesis of 3aa: An oven-dried Schlenk tube was charged with
1a (35.1 mg, 0.20 mmol), 2a (24.6 μL, 0.24 mmol), Pd(OAc)2 (3.4 mg,
7.5 mol-%), dppe (12.0 mg, 15.0 mol-%), and Cu(OAc)2 (0.20 mmol,
36.3 mg) in CH3CN (2 mL) under an oxygen atmosphere. The mix-
ture was heated at 75 °C for 36 h. After cooling, the mixture was
directly concentrated and purified by flash chromatography (10 to
20 % ethyl acetate in hexane) to afford 3aa (48.7 mg, 86 %).
[9] H. Cui, X. Liu, W. Wei, D. Yang, C. He, T. Zhang, H. Wang, J. Org. Chem.
2016, 81, 2252–2260.
[10] J.-P. Wan, S. Zhong, L. Xie, X. Cao, Y. Liu, L. Wei, Org. Lett. 2016, 18, 584–
587.
Supporting Information (see footnote on the first page of this
article): Detailed experimental procedures and analytical data.
[11] M. Iwasaki, M. Iyanaga, Y. Tsuchiya, Y. Nishimura, W. Li, Z. Li, Y. Nishihara,
Chem. Eur. J. 2014, 20, 2459–2462.
[12] a) Y. Jiang, T.-P. Loh, Chem. Sci. 2014, 5, 4939–4943; b) C. Feng, T.-P. Loh,
Angew. Chem. Int. Ed. 2013, 52, 12414–12417; Angew. Chem. 2013, 125,
12640–12643; c) S. Pankajakshan, Y.-H. Xu, J. K. Cheng, M. T. Low, T.-P.
Loh, Angew. Chem. Int. Ed. 2012, 51, 5701–5705; Angew. Chem. 2012,
[13] CCDC 1452382 (for 3ba) contains the supplementary crystallographic
[14] a) N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437; b)
T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 1971, 44, 581; c) R. F.
Heck, J. P. Nolley, J. Org. Chem. 1972, 37, 2320–2322.
[15] a) A. M. Taresh, J. Weiguny, Chem. Rev. 1996, 96, 2035–2052; b) O. Exner,
T. M. Krygowski, Chem. Soc. Rev. 1996, 25, 71–75.
[16] H. R. Chobanian, Y. Guo, P. Liu, M. D. Chioda, S. Fung, T. J. Lanza, L. Chang,
R. K. Bakshi, J. P. Dellureficio, Q. Hong, M. McLaughlin, K. M. Belyk, S. W.
Krska, A. K. Makarewicz, E. J. Martel, J. F. Leone, L. Frey, B. Karanam, M.
Madeira, R. Alvaro, J. Shuman, G. Salituro, J. L. Terebetski, N. Jochnowitz,
S. Mistry, E. McGowan, R. Hajdu, M. Rosenbach, C. Abbadie, J. P. Alexan-
der, L.-L. Shiao, K. M. Sullivan, R. P. Nargund, M. J. Wyvratt, L. S. Lin, R. J.
DeVita, ACS Med. Chem. Lett. 2014, 5, 717–721.
Acknowledgments
The authors gratefully acknowledge funding from the National
Natural Science Foundation, P. R. China (grant number
21502089), and the Starting Funding of Research, Nanjing Tech
University. The Nanyang Technological University (NTU), the
Singapore Ministry of Education Academic Research Fund
[Tier 1: MOE2015-T1-001-070 (RG5/15) and MOE2014-T1-001-
102 (RG9/14)], and the Singapore National Research Foundation
(NRF2015NRF-POC001-024) are gratefully thanked for generous
financial support. Dr. Li Yongxing (NTU) is thanked for single-
crystal X-ray diffraction analysis and Prof. Liu Chuan-Fa (NTU)
for his careful proofreading and useful discussions.
Keywords: Oxygen · Phosphane ligands · Thiolation ·
Dehydrogenation · C–H functionalization
[17] A. Ogawa, T. Ikeda, K. Kimura, J. Hirao, J. Am. Chem. Soc. 1999, 121, 5108–
5114.
[18] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-
katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Broth-
ers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghava-
chari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,
J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö.
Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09,
revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
[1] a) G. Sobal, E. J. Menzel, H. Sinzinger, Biochem. Pharmacol. 2001, 61, 373–
379; b) A. Halama, J. Jirman, O. Boušková, P. Gibala, K. Jarrah, Org. Process
Res. Dev. 2010, 14, 425–431; c) R. Suhas, S. Chandrashekar, D. C. Gowda,
Eur. J. Med. Chem. 2012, 48, 179–191; d) J. S. Zheng, S. Tang, Y. C. Huang,
L. Liu, Acc. Chem. Res. 2013, 46, 2475–2484; e) D. Meng, W. Chen, W.
Zhao, J. Nat. Prod. 2004, 70, 824–829; f) H. S. Sader, D. M. Johnson, R. N.
Jones, Antimicrob. Agents Chemother. 2004, 48, 53–62.
[2] a) S. Chen, R. Gopalakrishnan, T. Schaer, F. Marger, R. Hovius, D. Bertrand,
F. Pojer, C. Heinis, Nat. Chem. 2014, 6, 1009–1016; b) J. S. Zheng, H. N.
Chang, F. L. Wang, L. Liu, J. Am. Chem. Soc. 2011, 133, 11080–11083.
[3] a) C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. A. Hor, X. Liu, Chem. Soc. Rev.
2015, 44, 291–314; b) A. Satyam, M. E. Martin, S. R. Richard, Synthesis
1987, 900–904; c) L. Yang, Q. Wen, F. Xiao, G.-J. Deng, Org. Biomol. Chem.
2014, 12, 9519–9523.
Received: March 13, 2016
[4] E. J. Corey, D. Y. Gin, R. S. Kania, J. Am. Chem. Soc. 1996, 118, 9202–9203.
Published Online: ■
Eur. J. Org. Chem. 0000, 0–0
5
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim