1862
P. Kumar et al. / European Journal of Medicinal Chemistry 44 (2009) 1853–1863
5.1.2. Compound 8
[52]. The predictive powers of the equation were validated by the
Mp (ꢁC) 229–231; Yield – 16.4%; 1H NMR (CDCl3):
d
2.17 (s, 3H,
determination of cross-validated r2 (q2) using leave one out (LOO)
CH3 of ArCH3), 7.0 (m, 2H, CH of C3 and C4 of furan), 7.44 (d, 1H, CH
of C5 of furan), 7.26–7.76 (m, 4H, CH of ArCH3), 9.0 (s, 1H, NH); IR
(KBr pellets, cmꢀ1): 1027.4 (Ring breathing, 2-substituted furan),
1630.5 (C]O str., secondary amide), 3055.6 (CH str., aromatic),
2960.1 (CH, str., aliphatic), 948.5 (CH out of plane bending, 2-
substituted furan).
cross-validation method.
Appendix. Supplementary data
Supplementary data associated with this article can be found in
5.1.3. Compound 14
Mp (ꢁC) 69–72; Yield – 49.7%; 1H NMR (CDCl3):
d 7.27–8.22 (m,
References
4H, CH of mArNO2), 8.23–8.30 (m, 4H, CH of pArNO2), 8.70 (s, 1H,
NH); IR (KBr pellets, cmꢀ1): 1603.7 (C]O str., secondary amide),
3077.2 (CH str., aromatic), 1348.0 (NO2 symmetric str., ArNO2),
1525.1 (NO2 asymmetric str., ArNO2), 857.4 (C–N str., ArNO2).
[1] K. Bhandari, N. Srinivas, G.B.S. Keshava, P.K. Shukla, Eur. J. Med. Chem. 20
(2008) 1–11.
[2] E.W. Goldstein, Clin. Microbiol. Infect. 13 (2008) 2–6.
[3] G. Macchiarulo, D. Constantino, A.V. Fringuelli, F. Schiaffella, R. Fringuelli,
Bioorg. Med. Chem. 10 (2002) 3415–3423.
[4] M. Zareef, R. Iqbal, B. Mirza, K.M. Khan, A. Manan, F. Asim, W. Khan, ARKIVOC ii
(2008) 141–152.
[5] A. Nayyar, V. Monga, A. Malde, E. Coutinho, R. Jain, Bioorg. Med. Chem. 15
(2007) 626–640.
[6] K. Sztanke, K. Pasterhak, J. Rzymowska, M. Sztanke, M. Kandefer-Szerszen, Eur.
J. Med. Chem. 43 (2) (2007) 404–419.
[7] M.A.A. Radhwan, E.A. Ragab, N.M. Sabry, S.M. El-Shenawy, Bioorg. Med. Chem.
15 (2007) 3832–3841.
5.1.4. Compound 18
Mp (ꢁC) 168–171; Yield – 78.0%; 1H NMR (CDCl3):
d
3.93 (s, 6H,
OCH3), 6.90–7.23 (m, 3H, CH of Ar(OCH3)2), 7.25–7.54 (m, 3H, CH of
Ar(NO2)2), 8.60 (s, 1H, NH); IR (KBr pellets, cmꢀ1): 1622.6 (C]O str.,
secondary amide), 3000.9 (CH str., aromatic), 1343.7 (NO2
symmetric str., ArNO2), 1508.0 (NO2 asymmetric str., ArNO2), 865.7
(C–N str., ArNO2) 2960.3 (CH str., aliphatic).
[8] A.C.L. Leite, R.S. deLima, D.R. Moreira, M.V. Cardoso, A.C.G. de Brito, L.M.F. dos
Santos, M.Z. Hernandes, A.C. Kipustok, R.S. de Lima, M.B.P. Soares, Bioorg. Med.
Chem. 14 (2006) 3749–3757.
[9] G. Visbal, E. Marchan, A. Maldonado, Z. Simoni, M. Navarro, J. Inorg. Biochem.
102 (2008) 547–554.
[10] L.Q. Al-Mawsawi, R. Dayam, L. Taheri, M. Witvrouw, Z. Debyser, N. Neamati,
Bioorg. Med. Chem. Lett. 17 (2007) 6472–6475.
[11] M.L. Hanna, T.M. Tarasow, J. Perkins, Bioorg. Med. Chem. 35 (2007) 50–58.
[12] T.L. Smalley, A.J. Peat, J.A. Boucheron, S. Dickerson, D. Garrido, F. Preugschat,
S.L. Schweiker, S.A. Thomson, T.Y. Wang, Bioorg. Med. Chem. Lett. 16 (2006)
2091–2094.
5.1.5. Compound 22
Mp (ꢁC) 208–211; Yield – 35.5%; 1H NMR (CDCl3):
d 3.94 (s, 6H,
CH of OCH3), 6.91–7.24 (m, 3H, CH of Ar(OCH3)2), 7.26–7.55 (m, 4H,
CH of ArBr), 8.6 (s, 1H, NH); IR (KBr pellets, cmꢀ1): 564.5 (C–Br str.,
aromatic), 1598.3 (C]O str., secondary amide), 3002.1 (CH str.,
aromatic), 2837.5 (CH symmetric, aliphatic OCH3).
[13] S. Gemma, G. Kukreja, C. Fattorusso, M. Persico, M.P. Romano, M. Altarelli,
L. Savini, G. Campiani, E. Fattorusso, N. Basilico, D. Taramelli, V. Yardley,
S. Butini, Bioorg. Med. Chem. Lett. 16 (2006) 5384–5388.
[14] H. Verli, M.G. Albuquerque, R.B. Alencastro, E.J. Barreiro, Eur. J. Med. Chem. 37
(2002) 219–229.
[15] B. Narasimhan, U.R. Kothawade, D.S. Pharande, V.K. Mourya, A.S. Dhake, Indian
J. Chem. 42B (2003) 2828–2834.
[16] B. Narasimhan, D. Belsare, P. Pharande, V.K. Mourya, A.S. Dhake, Eur. J. Med.
Chem. 39 (10) (2004) 827–834.
5.1.6. Compound 26
Mp (ꢁC) 169–172; Yield – 78.6%; 1H NMR (CDCl3):
d 3.90 (s, 6H,
CH of OCH3), 6.82–7.10 (m, 3H, CH of Ar(OCH3)2), 7.39–7.94 (m, 4H,
CH of ArCl), 8.38 (s, 1H, NH); IR (KBr pellets, cmꢀ1): 1640.6 (C]O
str., secondary amide), 3036.2 (CH str., aromatic), 752.3 (C–Cl str.,
monochlorinated aromatic compounds), 2959.1 (CH str., asym-
metric, aliphatic CH3), 2839.6 (CH str., symmetric, aliphatic OCH3).
[17] B. Narasimhan, V.K. Mourya, A.S. Dhake, Bioorg. Med. Chem. Lett. 16 (2006)
3023–3029.
[18] B. Narasimhan, V.K. Mourya, A.S. Dhake, Khim. Farm. Zh. 41 (3) (2007)
133–139.
5.2. Evaluation of antimicrobial activity
[19] B. Narasimhan, R. Narang, V. Judge, S. Ohlan, R. Ohlan, ARKIVOC xv (2007)
112–126.
[20] B. Narasimhan, V. Judge, R. Narang, S. Ohlan, R. Ohlan, Bioorg. Med. Chem. Lett.
17 (2007) 5836–5845.
[21] B. Narasimhan, M. Kumari, N. Jain, A.S. Dhake, C. Sundaravelan, Bioorg. Med.
Chem. Lett. 16 (2006) 4951–4958.
[22] A. Kumar, B. Narasimhan, D. Kumar, Bioorg. Med. Chem. 15 (2007) 4113–4124.
[23] B. Narasimhan, A.S. Dhake, V.K. Mourya, ARKIVOC i (2007) 189–204.
[24] R. Ohlan, S. Ohlan, V. Judge, R. Narang, M. Ahuja, B. Narasimhan, ARKIVOC xiv
(2007) 172–184.
[25] M. Minu, A. Thangadurai, S. Wakode, S.S. Aggarwal, B. Narasimhan, Arch.
Pharm. (Weinheim) 341 (2008) 231–239.
[26] J.G. Cappucino, N. Sherman, Microbiology – A Laboratory Manual, Addison
Wesley Longman Inc., California, 1999, pp. 263.
[27] A.A.C. Pinheiro, R.S. Borges, L.S. Santos, C.N. Alves, J. Mol. Struct. (Theochem)
672 (2004) 215–219.
The antimicrobial activity was performed against Gram-positive
bacteria: S. aureus, B. subtilis, Gram-negative bacterium: E. coli and
fungal strains: C. albicans and A. niger. The minimum inhibitory
concentration (MIC) was determined by tube dilution method. Two
fold dilutions of test and standard compounds were prepared in
double strength nutrient broth – I.P. (bacteria) or Sabouraud
dextrose broth – I.P. [50] (fungi). The samples were incubated at
37ꢁ C (bacteria) for 24 h and at 37ꢁ C for 48 h (C. albicans) and 25ꢁ C
for 7 d (A. niger) and the results were recorded. Growth of micro-
organisms was determined visually. The lowest concentration at
which there was no visible growth (turbidity) was taken as MIC.
[28] C. Hansch, A. Leo, S.H. Unger, K.H. Kim, D. Nikaitani, E.J. Lien, J. Med. Chem. 16
(11) (1973) 1207–1216.
[29] L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research,
Academic Press, NewYork, 1976.
5.3. QSAR studies
The details of molecular descriptors are available in literature
and therefore they are not discussed over here [27–33]. The
structures of substituted hydrazide derivatives are first pre-opti-
mized with the Molecular Mechanics Force Field (MMþ) procedure
included in Hyperchem 6.03 [51], and the resulting geometries are
further refined by means of the semi-empirical method PM3
[30] M. Randic, J. Am. Chem. Soc. 97 (1975) 6609–6615.
[31] A.T. Balaban, Chem. Phys. Lett. 89 (1982) 399–404.
[32] H. Wiener, J. Am. Chem. Soc. 69 (1947) 17–20.
[33] M. Randic, Croat. Chem. Acta 66 (1993) 289–312.
[34] TSAR 3D Version 3.3, Oxford Molecular Limited, 2000.
[35] S.P. Gupta, A.N. Kumar, A.N. Nagazppa, D. Kumar, S. Kumaran, J. Med. Chem. 38
(2003) 867–873.
[36] A. Golbraikh, A. Tropsha, J. Mol. Graphics Model 20 (4) (2002) 269–276.
[37] J.M. Heravi, A. Kyani, J. Chem. Inf. Comput. Sci. 44 (2005) 1328–1335.
[38] H. Vande Waterweend, B.F. Carter, G. Grassy, H. Kubinyi, Y.C. Matrin, M.S. Tute,
P. Villet, Albany Molecular Research, Technical Report, vol. 2; 1998.
[39] L.F. Motta, A.C. Gaudio, T. Yuji, Internet Electron. J. Mol. Des. 5 (2006) 555–569.
[40] S. Bajaj, S.S. Sambi, A.K. Madan, Croat. Chem. Acta 78 (2) (2005) 165–174.
[41] P. Sharma, A. Kumar, M. Sharma, Eur. J. Med. Chem. 41 (2006) 833–840.
(Parametric Method-3). We chose
a gradient norm limit of
0.01 kcal/Å for the geometry optimization. The lowest energy
structure was used for each molecule to calculate physicochemical
properties using TSAR 3.3 software for windows [34]. Further the
regression analysis was performed using the SPSS software package