An Efficient Synthesis of Taxotere Side Chain
Letters in Organic Chemistry, 2009, Vol. 6, No. 8
617
O
NO2
O
O
NH
O
Ph
NO2
Ph
OEt
Ph
OEt
OH
OH
4
5
Scheme 1. Retrosynthesis for the synthesis of taxotere side chain.
O
NO2
O
O
NH
O
ii, iii
i
Ph
NO2
Ph
OEt
Ph
OEt
72%
48%
over two steps
OH
OH
5
4
Scheme 2. Reagents and conditions (i) ethyl glyoxalate, La-(R)-BINOL (10 mol%), THF, -50 oC, 60 h; (ii) H2/Pd-C, MeOH, rt; (iii) (Boc)2O,
Et3N, CH2Cl2, rt.
81% ee [8] (Scheme 2). Catalytic hydrogenation of the nitro
group in 5 followed by protection of the amino group with
Et3N and (Boc)2O afforded the taxotere side chain in 48 %
yield over two steps (89% ee).
REFERENCES AND NOTES
[1]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T.
Plant antitumor agents. VI: the isolation and structure of Taxol, a
novel antileukemic and antitumor agent from Taxus brevifolia. J.
Am. Chem. Soc., 1971, 93, 2325.
In conclusion, we have achieved a very short synthesis of
taxotere side chain in 34% overall yield starting from phenyl
nitromethane. We have performed this synthesis up to 1
gram level and hence this strategy is adaptable to gram scale
synthesis of taxotere side chain (34% yield, 89% ee). The
synthesis features an exception to the most other chiral
auxillary based approaches to taxotere side chain,
reaffirming the versatility of nitro aliphatics.
[2]
[3]
Borah, J.C.; Boruwa, J.; Barua, N.C. Synthesis of the C-13 side-
chain of taxol. Curr. Org. Synth., 2007, 4, 175.
Dziedzic, P.; Vesely, J.; Cordova, A. Catalytic asymmetric
synthesis of the docetaxel (taxotere) side chain: organocatalytic
highly enantioselective synthesis of esterification ready-ꢀ-hydroxy-
ꢂ-amino acids. Tetrahedron Lett., 2008, 49, 6631-6634 and
references cited therein.
(a). Kalita, D.; Khan, A.T.; Barua, N.C.; Bez, G. Total synthesis of
R-(+)-Patulolide A and R-(-)-Patulolide B: the macrolides isolated
from Penicillium urticae mutant. Tetrahedron, 1999, 55, 5177; (b)
Kalita, B.; Barua, N.C.; Bezbarua, M.S.; Bez, G. Synthesis of 2-
nitroalcohols by regioselective ring opening of epoxides with
[4]
SPECTRAL DATA OF SELECTED COMPOUNDS
Compound 4
MgSO4/MeOH/NaNO2
system:
a
short
synthesis
of
immunosuppressive agent FTY-720. Synlett, 2001, 1411; (c)
Gogoi, N.; Boruwa, J.; Barua, N.C. A total synthesis of (-)- bestatin
using Shibasaki’s asymmetric Henry reaction. Tetrahedron Lett.,
2005, 46, 7581-7582; (d) Boruwa, J.; Barua, N.C. Stereoslective
total synthesis of (+)-boronolide. Tetrahedron, 2006, 62, 1193; (e)
Gogoi, N.; Boruwa, J.; Barua, N.C. A concise total synthesis of
antifungal antibiotic (+)-preussin. Eur. J. Org. Chem., 2006, 1722;
(f) Saikia, P.P.; Baishya, G.; Goswami, A.; Barua, N.C. An
efficient reduction protocol for the synthesis of ꢂ-hydroxy
carbamates from ꢂ-nitro alcohols in one pot: a facile synthesis of
(-)-ꢂ-conhydrine. Tetrahedron Lett., 2008, 49, 6508; (g) Saikia,
P.P.; Goswami A.; Baishya, G.; Barua, N.C. An efficient and
stereoselective route to 1-deoxy-5-hydroxy-sphingosine analogues.
Tetrahedron Lett., 2009, 50, 1328.
m.p 61-64 oC [ꢀ]D20 = +1.1 (c = 1.0, CHCl3). IR (CHCl3):
ꢁ = 3469, 1737, 1558 cm-1. 1H NMR (300 MHz, CDCl3): ꢀ =
7.53-7.36 (m, 5H), 5.75-5.73 (d, 1H, J = 5.7 Hz), 4.84 (t, 1H,
J = 6.3 Hz), 4.23-4.14 (nm 2H), 1.12 (t, 3H, J =6.9 Hz). 13C
NMR (75 MHz, CDCl3): ꢀ = 170.6, 131.0, 130.4, 129.5,
128.3, 92.0, 72.6, 63.1, 14.1. MS (ESI): m/z = 239.1 (M+).
Compound 5
m.p 118-120 oC. [ꢀ]D = +6.4 (c = 0.9, CHCl3). IR
20
1
(CHCl3): ꢁ = 3441, 2979, 1719 cm-1. H NMR (300 MHz,
CDCl3): ꢀ = 7.37-7.26 (m, 5H), 5.43-5.40 (d, 1H, J = 9.3),
[5]
[6]
Borah, J.C.; Gogoi, S.; Boruwa, J.; Kalita, B.; Barua, N.C. A highly
efficient synthesis of the C-13 side-chain of taxol using Shibasaki’s
asymmetric Henry reaction. Tetrahedron Lett., 2004, 45, 3689.
(a) Sasai, H.; Suzuki, T.; Arai, T.; Shibasaki, M. Basic character of
pure earth metal alkoxides: utilization in catalytic C-C bond
forming reactions and catalytic asymmetric nitroaldol reactions. J.
Am. Chem. Soc., 1992, 114, 4418.; (b) Sasai, H.; Suzuki, T.; Itoh,
N.; Shibasaki, M. Catalytic asymmetric nitroaldol reactions: a new
practical method for the preparation of the optically active
lanthanum complex. Tetrahedron Lett., 1993, 34, 851.
5.25-5.22 (d, 1H, J = 9.6), 4.46 (bs, 1H), 4.38-4.24 (m, 2H),
3.18 (bs, 1H), 1.41 (s, 9H), 1.35-1.3 (t, 3H, J = 16.2 Hz). 13
C
NMR (75 MHz, CDCl3): ꢀ = 172.9, 155.1, 139.2, 128.5,
127.6, 126.7, 79.8, 73.6, 62.5, 55.9, 28.2, 14.1. MS (ESI):
m/z = 332.1 (M++Na).
ACKNOWLEDGEMENTS
The authors thank the Director, NEIST, Jorhat for
providing facilities to carryout this work. TJD and PPS also
thank CSIR, New Delhi for the award of fellowships.
[7]
Kornblum, N.; Smiley, R.A.; Blackwood, R.K.; Iffland, D.C. The
mechanism of the reaction of silver nitrite with alkyl halides: the