B.Newhouse et al./ Bioorg.Med.Chem.Lett.14 (2004) 5537–5542
5541
2. Imai, T.; Baba, M.; Nishimura, M.; Kakizaki, M.; Takagi,
S.; Yoshie, O. J.Biol.Chem. 1997, 272, 15036–15042.
3. Imai, T.; Chantry, D.; Raport, C.; Wood, C.; Nishimura,
M.; Godiska, R.; Yoshie, O.; Gray, P. J.Biol.Chem. 1998,
273, 1764–1768.
4. (a) Gonzalo, J. A.; Pan, Y.; Lloyd, C. M.; Jia, G.-Q.; Yu,
G.; Dussault, B.; Powers, C. A.; Proudfoot, A. E.; Coyle,
A. J.; Gearing, D.; Gutierrez-Ramos, J.-C. J.Immunol.
1999, 163, 403–411; (b) Vestergaard, C.; Yoneyama, H.;
Murai, M.; Nakamura, K.; Tamaki, K.; Terashima, Y.;
Imai, T.; Yoshie, O.; Irimura, T.; Mizutani, H.; Matsu-
shima, K. J.Clin.Invest. 1999, 104, 1097–1105; (c) Lloyd,
C. M.; Delaney, T.; Nguyan, T.; Tian, J.; Martinez, A. C.;
Coyle, A. J.; Gutierrez-Ramos, J.-C. J.Exp.Med. 2000,
191, 265–273.
a rigid SAR wherein R1 and R2 were optimal as dichloro
or difluoro substitution. Compound 38 was prepared in
racemic form and displayed an IC50 of 0.5lM. Subse-
quent preparation in enantiopure form (compound 39;
R,R stereochemistry) provided a 5–6 fold increase in po-
tency to 0.09lM, the most potent CCR4 binder we had
identified so far. It is important to note that chiral
HPLC analysis on intermediate 9 (R1 = R2 = Cl; see
Scheme 1) revealed that the enantiomeric excess was
>95% and no epimerization or diastereomer formation
was observed by NMR during subsequent chemistry
leading to 39. This compound showed excellent chemo-
taxis inhibition in both MDC and TARC driven cell
migration assays (EC50 = 0.3 and 0.1lM, respectively).
In general, the IC50/EC50 ratio was closer to unity with
the lactams series as compared to the thiazolidinone
series. Compound 39 also displayed excellent selecti-
vity for CCR4 versus CCR3, CCR5, CCR6, CCR8,
and CX3CR1, as <20% inhibition of chemotaxis was
observed at 10lM concentrations of 39 against these
chemokine receptors.
5. Allen, S.; Newhouse, B.; Anderson, A. S.; Fauber, B.;
Allen, A.; Chantry, D.; Eberhardt, C.; Odingo, J.;
Burgess, L. E. Bioorg.Med.Chem.Lett. 2004, 14, 1619–
1624.
6. Mutlib, A. E.; Jurcak, J.; Hrib, N. Drug Metab.Dispos.
1996, 24, 1139–1150.
7. The results of ab initio calculations demonstrated that two
envelope conformations were energetically accessible for
both the thiazolidinone and the lactam scaffold, allowing
comparable orientations for the substituents. Optimiza-
tions were performed using the 6-31G(d) basis set; Gaus-
sian 98, Revision A.11 Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Strat-
mann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.;
Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;
Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci,
B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.
M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J.
L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.;
Pople, J. A.; Gaussian Inc.: Pittsburgh, PA, 2001.
8. (a) Meyers, A. I.; Brengel, G. P. Chem.Commun. 1997, 1–
8; (b) Stewart, J. D.; Fields, S. C.; Kochhar, K. S.;
Pinnick, H. W. J.Org.Chem. 1987, 52, 2110–2113; (c)
Zhuang, Z.-P.; Kung, M.-P.; Mu, M.; Kung, H. F. J.Med.
Chem. 1998, 41, 157–166.
Ultimately, we proceeded to obtain mouse pharmacoki-
netic data on compound 41.18 This lactam showed
promising blood levels when administered intraperiton-
eally (Cmax = 2445ng/ml; t1/2 = 1.4h; AUC = 3473ngh/
ml at 10mg/kg in the mouse) and provided an excellent
pharmacological tool to study the validity of CCR4
antagonism in vivo. Results of these studies will be re-
ported in due course.
In summary, we have prepared a series of lactams that
show good binding potency, excellent chemotaxis inhib-
itory activity and selectivity over other chemokine recep-
tors. The (R,R) enantiopure lactams were prepared in
>95% ee and have about a two- to fivefold advantage
in binding over their racemic counterparts. The lactams,
although in general less potent than the original thiazo-
lidinones, tracked well with the previously reported
SAR and displayed enhanced chemotaxic antagonism.
Preliminary in vitro and in vivo pharmacokinetic prop-
erties continues to be optimized and will be reported in
due course along with pharmacodynamic results in ani-
mal models of allergic disease.
9. (a) Kraus, W.; Kuehne, G.; Sauerbrey, N. Eur.J.Clin.
Pharm. 1990, 38, 71–75; (b) Krause, W.; Kuehne, G.;
Matthes, H. Xenobiotica 1989, 19, 683–692.
10. (a) Nyzam, V.; Belaud, C.; Zammattio, F.; Villieras, J.
Tetrahedron: Asymmetry 1996, 7, 1835–1843; (b) Ennis,
M. D.; Hoffman, R. L.; Ghazal, N. B.; Old, D. W.;
Mooney, P. A. J.Org.Chem. 1996, 61, 5813–5817; (c)
Fains, O.; Vernon, J. M. Tetrahedron Lett. 1997, 38, 8265–
8266; (d) Agami, C.; Couty, F.; Evano, G. Tetrahedron
Lett. 1999, 40, 3709–3712.
Acknowledgements
The authors wish to thank Dr. Andrew Allen for his
assistance in NMR acquisition and interpretation.
Supplementary data
11. Meyers, A. I.; Seefield, M. A.; Lefker, B. A.; Blake, J. F. J.
Am.Chem.Soc. 1997, 119, 4565–4566.
Supplementary data associated with this article can be
12. Assay measures inhibition of binding of 125I-MDC to
murine pre-B cell line L1.2 cells over-expressing CCR4.
IC50 values are shown as the mean of duplicate determi-
nations and possess a standard error of <20%. See: Imai,
T.; Chantry, D.; Raport, C. J.; Wood, C. L.; Nishimura,
M.; Godiska, R.; Yoshie, O.; Gray, P. W. J.Biol.Chem.
1998, 273, 1764–1768.
References and notes
1. (a) Carter, P. H. Curr.Opin.Chem.Biol. 2002, 6, 510–525;
(b) Luster, A. D. N.Eng.J.Med. 1998, 338, 436–445.
13. In general, the human liver microsome stabilities of the
compounds in Table 1 correlated well with the mouse liver