10.1002/anie.201808509
Angewandte Chemie International Edition
COMMUNICATION
[2] a) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119-2183. b) T. Liang,
C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214-8264.
c) T. A. Unzner, T. Magauer, Tet. Lett. 2015, 56, 877-883.
[3]
a) R. T. Thornbury, F. D. Toste, Angew. Chem. Int. Ed. 2016, 55,
11629-11632. b) J. Zhang, W. Dai, Q. Liu, S. Cao, Org. Lett. 2017, 19,
3283-3286.
[4]
[5]
X. Zhang, S. Cao, Tet. Lett. 2017, 58, 375-392.
Y. Huang, T. Hayashi, J. Am. Chem. Soc. 2016, 138, 12340-12343. For
other examples of transition-metal-mediated defluorinative reactions,
please see: a) K. Sakoda, J. Mihara, J. Ichikawa, Chem. Commun.
2005, 0, 4684-4686. b) J. Ichikawa, R. Nadano, N. Ito, Chem. Commun.
2006, 0, 4425-4427. c) T. Ichitsuka, T. Fujita, T. Arita, J. Ichikawa,
Angew. Chem. Int. Ed. 2014, 53, 7564-7568. d) Z. Zhang, Q. Zhou, W.
Yu, T. Li, G. Wu, Y. Zhang, J. Wang, Org. Lett. 2015, 17, 2474-2477. e)
T. Ichitsuka, T. Fujita, J. Ichikawa, ACS Catal. 2015, 5, 5947-5950. f) T.
Fujita, T. Arita, T. Ichitsuka, J. Ichikawa, Dalton Trans. 2015, 44,
19460-19463.
Scheme 4. a) Ni(PCy)3Cl2 (5 mol %), LiAl(OtBu)3H (3 equiv), THF, 40 oC b)
Ni(dppp)Cl2 (10 mol %), MeMgBr (10 equiv), C6H6, reflux. c) Pd(TFA)2 (10
mol %), 4,4'-Di-tert-butyl-2,2'-dipyridyl (11 mol %), PhB(OH)2 (2 equiv), DMF,
50 oC d) tert-butyl-acrylate (2 equiv), Grubb’s 2nd Generation Catalyst (10
mol %), DCM, 40 oC. All reported yields are isolated yields. See supporting
information for detailed reaction conditions.
stereochemical information. Stereoselective palladium-catalyzed
mono-functionalization of the vinyl fluorides was also
accomplished, using the protocol developed by Toste,[16]
furnishing the desired product 3cc in excellent yield and
stereoselectivity. Harnessing the lack of reactivity of gem-
difluoro olefins allows chemo-selective olefin metathesis
affording 3x in modest yield with no loss in enantiomeric
purity.[17]
In conclusion, we have developed an enantioselective
rhodium-catalyzed defluorinative α-arylation reaction. Through
the development of our methodology, we are able to access
various secondary amides, containing a tertiary α-stereocenter
[6]
[7]
a) M. Sakai, H. Hayashi, N. Miyaura, Organometallics 1997, 16, 4229.
b) T. Yoshiaki, M. Ogasawara, T. Hayashi, J. Am. Chem. Soc. 1998,
120, 5579. For related work on rhodium-catalyzed α-arylation of β-nitro-
acrylates and -amides, see: c) A. Petri, O. Seidelmann, U. Eilitz, F.
Leßmann, S. Reißmann, V. Wendisch, A. Gutnov, Tet. Lett. 2014, 55,
267-270. d) J.-H. Jian, C.-L. Hsu, J.-F. Syu, T.-S. Kuo, M.-K. Tsai, P.-Y.
Wu, H.-L. Wu, J. Org. Chem. 2018, DOI: 10.1021/acs.joc.8b00586.
a) F. Paul, J. Patt, J. F. Hartwig, Organometallics 1995, 14, 3030-3039.
b) M. Palucki, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 11108-
11109 c) X. Liu, J. F. Hartwig, Org. Lett. 2003, 5, 1915-1918. d) E. P.
Kündig, T. M. Seidel, Y.-X. Jia, G. Bernardinelli, Angew. Chem. Int. Ed.
2007, 46, 8484-8487. e) X. Liao, Z. Weng, J. F. Hartwig, J. Am. Chem.
Soc. 2008, 130, 195-200. f) Y.-X. Jia, J. M. Hillgren, E. L. Watson, S. P.
Marsden, E. P. Kündig, Chem. Commun. 2008, 0 , 4040-4042. g) A. M.
Taylor, R. A. Altman, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131,
9900-9901. h) S. Wurtz, C. Lohre, K. Bergander, F. Glorius, J. Am.
Chem. Soc. 2009, 131, 8344-8345. i) X. Luan, L. Wu, E. Drinkel, R.
Mariz, M. Gatti, R. Dorta, Org. Lett. 2010, 12, 1912-1915. j) K.
Kobayashi, Y. Yamamoto, N. Miyaura, Organometallics 2011, 30, 6323-
6327. k) S. Ge, J. F. Hartwig, J. Am. Chem. Soc. 2011, 133, 16330-
16333. l) D. Katayev, Y.-X. Jia, A. K. Sharma, D. Banerjee, C. Besnard,
R. B. Sunoj, E. P. Kündig, Chem. Eur. J. 2013, 19, 11916-11927. m) Z.
Jiao, J. J. Beiger, Y. Jin, S. Ge, J. S. Zhou, J. F. Hartwig. J. Am. Chem.
Soc. 2016, 138, 15980-15986. n) Y. Jin, M. Chen, S. Ge, J. F. Hartwig,
Org. Lett. 2017, 19, 1390-1393.
and
obtained exhibit thermodynamic stability towards isomerization
and are novel class of fluorinated molecules. Further
a β,γ-unsaturated gem-difluoro olefin. The products
a
derivatization studies are underway to access enantiomerically
enriched fluorinated compounds.
Acknowledgements
We thank the University of Toronto, Alphora Research, Inc., and
the Natural Sciences and Engineering Research Council
(NSERC) for financial support. We thank Dr. Jack Sheng and
the NMR staff for their assistance, Dr. Alan Lough for obtaining
all X-ray crystal structures, and Professor Mark Taylor for helpful
suggestions and guidance with the “same excess” kinetic
studies. Dr. Ivan Franzoni, H. Xiao and A. Yen are thanked for
fruitful discussions throughout the project. Actelion and Johnson
Matthey are thanked for their donation of the Ph-bod* precursor
and subsidy with the rhodium complexes, respectively.
[8]
a) P. M. Lundin, G. C. Fu, J. Am. Chem. Soc. 2010, 132, 11027-11029.
b) Z. Huang, Z. Liu, J. Zhou, J. Am. Chem. Soc. 2011, 133, 15882-
15885. c) J. Choi, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 9102-9105.
d) Z. Huang, Z. Chen, L. H. Lim, G. Chuong, P. Quang, H. Hirao, J.
Zhou, Angew. Chem. 2013, 125, 5919-5924. e) Z. Huang, L. H. Lim, Z.
Chen, Y. Li, F. Zhou, H. Su, J. Zhou, Angew. Chem. Int. Ed. 2013, 52,
4906-4911. For copper-catalyzed α-arylation reactions, please see: f) J.
S. Harvey, S. P. Simonovich, C. R. Jamison, D. W. C. MacMillan, J. Am.
Chem. Soc. 2011, 133, 13782-13785. g) A. Bigot, A. E. Williamson, M.
J. Gaunt, J. Am. Chem. Soc. 2011, 133, 13778-13781.
[9]
a) R.-R. Liu, B.-L. Li, J. Lu, C. Shen, J.-R. Gao, Y.-X. Jia, J. Am. Chem.
Soc. 2016, 138, 5198-5201. b) C. Zhu, D. Wang, Y. Zhao, W.-Y. Sun, Z.
Shi, J. Am. Chem. Soc. 2017, 139, 16486-16489.
Keywords: Defluorinative Arylation • Asymmetric Catalysis •
Rhodium Catalysis
[10] a) T. Konno, T. Tanaka, T. Miyabe, A. Morigaki, T. Ishihara, Tet. Lett.
2008, 49, 2106-2110.
[11] a) J. S. Mathew, M. Klussmann, H. Iwamura, F. Valera, A. Futran, E. A.
C. Emanuelsson, D. G. Blackmond, J. Org. Chem. 2006, 71, 4711-4722.
b) R. D. Baxter, D. Sale, K. M. Engle, J.-Q. Yu, D. G. Blackmond, J. Am.
Chem. Soc. 2012, 134, 4600−4606.
[1]
a) H.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller,
U. Obst-Sander, M. Stahl, Chem. Bio. Chem. 2004, 5, 637-643 b) K.
Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881. c) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37,
320. d) J. Wang, M. Sánchez-Roselló, J. Luis Aceña, C. Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu Chem. Rev. 2014,
114, 2432-2506. e) Xi. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem.
Rev. 2015, 115, 826-870.
[12] R. Cramer, J. Am. Chem. Soc. 1989, 18, 4621-4626.
[13] a) A. J. J. Lennox, G. C. Lloyd-Jones, J. Am. Chem. Soc. 2012, 134,
7431-7441. b) E. M. Simmons, B. Mudryk, A. G. Lee, Y. Qiu, T. M.
Razler, Y. Hsiao, Org. Process Res. Dev. 2017, 21, 1659-1667. c) M.
This article is protected by copyright. All rights reserved.