10.1002/anie.201802821
Angewandte Chemie International Edition
COMMUNICATION
[3]
[4]
Reviews on Tsuji–Trost allylation reactions: a) B. M. Trost, Tetrahedron
2015, 71, 5708–5733; b) J. Tsuji, Tetrahedron 2015, 71, 6330–6348.
a) B. M. Trost, D. A. Thaisrivongs, J. Am. Chem. Soc. 2009, 131,
12056–12057; b) B. M. Trost, D. A. Thaisrivongs, J. Hartwig, J. Am.
Chem. Soc. 2011, 133, 12439–12441; Synthesis of enantioenriched b-
stereogenic 2-alkylpyridines: c) B. M. Trost, D. A. Thaisrivongs, J. Am.
Chem. Soc. 2008, 130, 14092–14093.
carbonate 2, to produce a neutral alkoxo(p-allyl)palladium(II)
complex (B). Coordination of a 2-alkylpyridine (1) to B forms a
cationic complex with an alkoxide counter anion (C). Further
coordination of 1 to C forms an off-cycle species (D, [Pd(R1-
allyl)(P*)(1)2]+(OR2)–). Next, cleavage of a side chain C(a)–H
bond produces the (h1-enamido)(h3-allyl)palladium(II) complex
(E). This catalyst-turnover-limiting step should be promoted by
effective acid–base cooperation between the cationic Pd(II)
center bound to the N atom and the alkoxide ion interacting with
one of the C(a)–H protons. Finally, diastereoselective reductive
elimination of the h1-enamido ligand and the h3-allyl ligand,
either in a direct manner or through a multi-step pathway
involving h3-to-h1 hapticity change in the allylic ligand, furnishes
the enantio-enriched C(a)-allylation product 3.
[5]
Pd- or Ni-catalyzed allylic substitution reactions with diarylmethane
pronucleophiles containing azaarene units in the presence of strong
bases: a) S.-C. Sha, J. Zhang, P. J. Carroll, P. J. Walsh, J. Am. Chem.
Soc. 2013, 135, 17602–17609; b) S.-C. Sha, H. Jiang, J. Mao, A.
Bellomo, S. A. Jeong, P. J. Walsh, Angew. Chem. 2016, 128, 1082–
1086; Angew. Chem. Int. Ed. 2016, 55, 1070–1074. Pd-catalyzed
benzylic C–H benzylation of 2-benzylazoles without an external base:
c) T. Mukai, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2010, 12, 1360–
1363.
[6]
[7]
a-Deprotonation of alkylazaarenes with bases: a) S. Mangelinckx, N.
Giubellina, N. De Kimpe, Chem. Rev. 2004, 104, 2353–2400; b) R. D.
Clark, A. Jahangir, Org. React. 1995, 47, 1–314.
R1
OCO2R2
R3
*
N
2
P* Pd(solv)n
Breinbauer and co-workers reported the non-enantioselective additive-
free Pd-catalyzed side-chain C(a)-allylation of imine-containing
heterocycles. However, 2-alkylpyridines were out of scope: M. Kljajic, J.
G. Puschnig, H. Weber, R. Breinbauer, Org. Lett. 2017, 19, 126–129.
Pd-catalyzed allylation with allylic carbonates without external bases: J.
Tsuji, I. Shimizu, I. Minami, Y. Ohashi, T. Sugiura, K. Takahashi, J. Org.
Chem. 1985, 50, 1523–1529.
3
A
R1
fast
R1
CO2
Enantioselection step
R1
[8]
[9]
Pd
P* Pd
OR2
P*
–OR2
R1
B
N
R3
E
Pd-catalyzed intramolecular decarboxylative side-chain C(a)-allylation
of 2-alkylazaarenes: a) S. R. Waetzig, J. A. Tunge, J. Am. Chem. Soc.
2007, 129, 4138–4139; b) J. D. Weaver, A. Recio, A. J. Grenning, J. A.
Tunge, Chem. Rev. 2011, 111, 1846–1913.
– 1
P* Pd+
N
1
R2OH
R3
R3
Turnover-limiting step
N
C
[10] a) M. Sawamura, H. Hamashima, Y. Ito, Tetrahedron: Asymmetry 1991,
2, 593–596; b) M. Sawamura, H. Hamashima, M. Sugawara, R.
Kuwano, Y. Ito, Organometallics 1995, 14, 4549–4558; c) Y. Asano, H.
Ito, K. Hara, M. Sawamura, Organometallics 2008, 27, 5984–5996.
[11] The use of allylic substrates containing acetate, phosphate, or chloride
as a leaving group did not provide 3. See Supporting Information.
[12] a) I. Ayora, R. M. Ceder, M. Espinel, G. Muller, M. Rocamora, M.
Serrano, Organometallics 2011, 30, 115–128; b) B. M. Trost, T. M. Lam,
J. Am. Chem. Soc. 2012, 134, 11319–11321; c) B. M. Trost, T. M. Lam,
M. A. Herbage, J. Am. Chem. Soc. 2013, 135, 2459–2461.
– 1
+ 1
[Pd(R1-allyl)(P*)(1)2]+(OR2)–
D Off-cycle species
Figure 2. A possible reaction pathway
In conclusion, a Pd-catalyzed asymmetric side-chain C(a)-
allylation of 2-alkylpyridines without an external base was
developed.
Newly
synthesized
D-isomannide-based
monodentate diamidophosphite ligands enabled the highly
linear- and enantioselective allylation with good functional group
compatibility. The reaction pathway is proposed to involve
formation of a (p-allyl)palladium(II) complex coordinated with a
single molecule of the phosphine ligand and the 2-alkylpyridine
substrate followed by side-chain C(a)-deprotonation by an
alkoxide anion. Studies on extending this strategy to other alkyl
azaarenes for catalytic asymmetric C–H functionalization
reactions are ongoing.
[13] Asymmetric catalysis with D-isomannide-based diamidophosphites: K.
N. Gavrilov, S. V. Zheglov, P. A. Vologzhanin, E. A. Rastorguev, A. A.
Shiryaev, M. G. Maksimova, S. E. Lyubimov, E. B. Benetsky, A. S.
Safronov, P. V. Petrovskii, V. A. Davankov, B. Schäffner, A. Börner,
Russ. Chem. Bull. 2008, 57, 2311–2319.
[14] The absolute configuration of 3b was determined to be R by a chemical
transformation to a known compound. See Supporting Information.
[15] The ee value of 3a remained almost unchanged at shorter and longer
reaction time (12–48 h), indicating no racemization during the catalysis.
[16] A review for dispersive interactions: J. P. Wagner, P. R. Schreiner,
Angew. Chem. 2015, 127, 12446–12471; Angew. Chem. Int. Ed. 2015,
54, 12274–12296.
Acknowledgements
This work was supported by JST ACT-C Grant Number
JPMJCR12YN and JSPS KAKENHI Grant Number JP15H05801
in Precisely Designed Catalysts with Customized Scaffolding to
M.S. R.M. thanks JSPS for scholarship support.
[17] For dispersive ligand–substrate attractions in asymmetric metal
catalysis, see: a) M. C. Schwarzer, A. Fujioka, T. Ishii, H. Ohmiya, S.
Mori, M. Sawamura, Chem. Sci. 2018, 9, 3484–3493. b) T. Ishii, R.
Watanabe, T. Moriya, H. Ohmiya, S. Mori, M. Sawamura, Chem. Eur. J.
2013, 19, 13547–13553.
[18] The absolute configuration of 3c was determined to be R by vibrational
circular dichroism. See: T. Taniguchi, K. Monde, J. Am. Chem. Soc.
2012, 134, 3695–3698. See Supporting Information.
Keywords: Asymmetric catalysis
· C–H functionalization ·
Allylation · 2-Alkylpyridines · Palladium
[19] Related works on the Pd-catalyzed allylic alkylation with ketone
enolates: a) M. Braun, F. Laicher, T. Meier, Angew. Chem. 2000, 112,
3637–3640; Angew. Chem. Int. Ed. 2000, 39, 3494–3497; b) W.-H.
Zheng, B.-H. Zheng, Y. Zhang, X.-L. Hou, J. Am. Chem. Soc. 2007,
129, 7718–7719.
[1]
[2]
a) J. A. Joule, K. Mills, Heterocyclic chemistry, 5th ed.; John Wiley &
Sons: Chichester, U.K. 2010; b) S. D. Roughley, A. M. Jordan, J. Med.
Chem. 2011, 54, 3451–3479; c) E. Vitaku, D. T. Smith, J. T. Njardarson,
J. Med. Chem. 2014, 57, 10257–10274.
D. Best, H. M. Lam, J. Org. Chem. 2014, 79, 831–845.
This article is protected by copyright. All rights reserved.