78-08-0Relevant articles and documents
Sustainable Catalytic Synthesis of Diethyl Carbonate
Putro, Wahyu S.,Ikeda, Akira,Shigeyasu, Shinji,Hamura, Satoshi,Matsumoto, Seiji,Lee, Vladimir Ya.,Choi, Jun-Chul,Fukaya, Norihisa
, p. 842 - 846 (2020/12/07)
New sustainable approaches should be developed to overcome equilibrium limitation of dialkyl carbonate synthesis from CO2 and alcohols. Using tetraethyl orthosilicate (TEOS) and CO2 with Zr catalysts, we report the first example of sustainable catalytic synthesis of diethyl carbonate (DEC). The disiloxane byproduct can be reverted to TEOS. Under the same conditions, DEC can be synthesized using a wide range of alkoxysilane substrates by investigating the effects of the number of ethoxy substituent in alkoxysilane substrates, alkyl chain, and unsaturated moiety on the fundamental property of this reaction. Mechanistic insights obtained by kinetic studies, labeling experiments, and spectroscopic investigations reveal that DEC is generated via nucleophilic ethoxylation of a CO2-inserted Zr catalyst and catalyst regeneration by TEOS. The unprecedented transformation offers a new approach toward a cleaner route for DEC synthesis using recyclable alkoxysilane.
CATALYST AND RELATED METHODS INVOLVING HYDROSILYLATION AND DEHYDROGENATIVE SILYLATION
-
Paragraph 00152-00154; 00157; 00160; 00155, (2019/02/06)
A catalyst having a specific structure and a method fop rearing the catalyst is disclosed. A composition is also disclosed, which comprises: (A) an unsaturated compound including at least one aliphatically unsaturated group per molecule, subject to at least one of the following two provisos: (1) the (A) unsaturated compound also includes at least one silicon-bonded hydrogen atom per molecule; and/or (2) the composition further comprises (B) a silicon hydride compound including at least one silicon-bonded hydrogen atom per molecule. The composition further comprises (C) the catalyst. A method of preparing a hydrosilylation reaction product and a dehydrogenative silylation reaction product are also disclosed.
Fe and Co Complexes of Rigidly Planar Phosphino-Quinoline-Pyridine Ligands for Catalytic Hydrosilylation and Dehydrogenative Silylation
Basu, Debashis,Gilbert-Wilson, Ryan,Gray, Danielle L.,Rauchfuss, Thomas B.,Dash, Aswini K.
, p. 2760 - 2768 (2018/09/10)
Co and Fe dihalide complexes of a new rigidly planar PNN ligand platform are prepared and examined as precatalysts for hydrosilylation of alkenes. Lithiation of Thummel's 8-bromo-2-(pyrid-2′-yl)quinoline followed by treatment with (i-Pr)2PCl and (C6F5)2PCl afforded the phosphine-quinoline-pyridine ligands, abbreviated RPQpy for R = i-Pr and C6F5, respectively. These ligands form 1:1 adducts with the dichlorides and dibromides of iron and cobalt. Crystallographic characterization of FeBr2(iPrPQpy), FeBr2(ArFPQpy), CoCl2(iPrPQpy), CoBr2(iPrPQpy), and CoCl2(ArFPQpy) confirmed that the M-P-C-C-N-C-C-N portion of these complexes is planar within 0.078 ? unlike previous generations of PNN complexes where deviations from planarity were ~0.35 ?. Bond distances as well as magnetism indicate that the Fe complexes are high spin and the cobalt complexes are high spin or participate in spin equilibria. Also investigated were the NNN analogues of the RPQpy ligands, wherein the phosphine group was replaced by the mesityl ketimine. The complexes FeBr2(MesNQpy) and CoCl2(MesNQpy) were characterized crystallographically. Reduction of MX2(RPQpy) complexes with NaBHEt3 generates catalysts active for anti-Markovnikov silylation of simple and complex 1-alkenes with a variety of hydrosilanes. Catalysts derived from MesNQpy exhibited low activity. Fe-RPQpy derived catalysts favor hydrosilylation, whereas Co-RPQpy based catalysts favor dehydrogenative silylation. Catalysts derived from CoX2(iPrPQpy) convert hydrosilanes and ethylene to vinylsilanes. Related experiments were conducted on propylene to give propenylsilanes.
New vinyl alkoxy silane preparation process
-
Paragraph 0041; 0042, (2016/10/08)
The present invention discloses a new vinyl alkoxy silane preparation process, which is characterized in that hydrogen chloride produced during a preparation process is adopted as a reactant to synthesize an initial raw material trichlorosilane, the hydrogen chloride is recycled, and the byproduct bis(trialkoxy)silyl ethane is adopted as a reaction solvent during a hydrogen silicon addition process, such that the byproduct emission is reduced, the new impurity introduction is avoided, and the product purity is improved. According to the present invention, the new process has characteristics of stable production, simple preparation process, and mild reaction conditions, and the yield of the product vinyl alkoxy silane is high, and the product purity is more than 99%.
COSMETIC TREATMENT METHOD COMPRISING THE APPLICATION OF A COATING BASED ON AN AEROGEL COMPOSITION OF LOW BULK DENSITY
-
Paragraph 0070, (2014/02/15)
The present invention relates to a cosmetic treatment method comprising the formation of a coating on keratin fibres characterized in that it comprises: 1) the preparation of an aerogel precursor composition comprising:—at least one organic solvent chosen from acetone, C1-C4 alcohols, C1-C6 alkanes, C1-C4 ethers, which may or may not be perfluorinated, and mixtures thereof and at least one precursor compound that contains:—at least one atom chosen from silicon, titanium, aluminium and zirconium,—at least one hydroxyl or alkoxy function directly attached to the atom chosen from silicon, titanium, aluminium and zirconium by an oxygen atom, and,—optionally an organic group directly attached to the atom chosen from silicon, titanium, aluminium and zirconium by a carbon atom, 2) the removal of the solvent or solvents resulting in the formation of an aerogel composition having a bulk density less than or equal to 0.35 g/cm3, 3) the application to the keratin fibres of the aerogel composition resulting from step 2) or of the aerogel precursor composition resulting from step 1). Advantageously, the molar ratio between the precursor compounds and the solvent is at most 1/20.
Ruthenium-catalyzed dealkenative N-silylation of amines by substituted vinylsilanes
Marciniec, Bogdan,Kostera, Sylwia,Wyrzykiewicz, Bozena,Pawlu, Piotr
supporting information, p. 782 - 786 (2015/02/19)
The ruthenium hydride complex-catalyzed N-silylation of primary and secondary amines with substituted vinylsilanes, with the general formula R1CHCHSiR′3 (where R1 = H, Ph, n-Bu, Si(OEt)3), leading to the formation of a Si-
POLYMER-BOUND BISACYLPHOSPHINE OXIDES
-
, (2012/06/16)
The invention pertains to an oligomer or polymer substituted by one or more bisacylphosphine oxide moieties, characterized in that said bisacylphosphine oxide moiety is linked via the phosphorous atom, optionally via a spacer group, to the oligomer or polymer backbone; as well as to specifically functionalized bisacylphosphine oxides, suitable to prepare said polymers or oligomers.
Stereoselective synthesis of (E)- and (Z)-triethoxy(vinyl-d 2)silanes by hydrosilylation of acetylene-d 2
Gordillo, Alvaro,Forigua, Johan,Lopez-Mardomingo, Carmen,De Jesus, Ernesto
experimental part, p. 352 - 355 (2011/03/21)
The hydrosilylation of deuterated acetylene with triethoxysilane can be directed to the synthesis of either cis or trans triethoxy(vinyl-d 2)silanes by an appropriate choice of metal catalyst. In addition, we have demonstrated the viability of designing hydrosilylation-arylation sequential processes in which acetylene can be converted into styrenes or stilbenes using the same Pd catalyst for both reactions.
COMPOUNDS WITH GUANIDINE STRUCTURE AND USES THEREOF AS ORGANOPOLYSILOXANE POLYCONDENSATION CATALYSTS
-
, (2011/11/30)
A compound having a guanidine structure and uses thereof as organopolysiloxane polycondensation catalysts are described.
COMPOSITION FOR RESIST UNDERLAYER FILM AND PROCESS FOR PRODUCING SAME
-
, (2010/06/22)
A composition for a resist underlayer film is provided. The composition has excellent storage stability and can form a resist underlayer film which has excellent adhesion to a resist film, can improve reproducibility of a resist pattern and is resistant to an alkaline liquid used in development and to oxygen asking during the removal of a resist. The composition comprises a hydrolyzate and/or a condensate of a silane compound of the following formula (A), [in-line-formulae]R1bR2cSi (OR3)4-a??(A)[/in-line-formulae] wherein R1 is a monovalent organic group having at least one unsaturated bond, R2 individually represents a hydrogen atom, a halogen atom or a monovalent organic group, R3 individually represents a monovalent organic group, R1 is a group other than OR3, a is an integer of 1 to 3, b is an integer of 1 to 3, and c is an integer of 0 to 2, provided that a=b+c.