Welcome to LookChem.com Sign In|Join Free

CAS

  • or

93713-40-7

Post Buying Request

93713-40-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

93713-40-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 93713-40-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,3,7,1 and 3 respectively; the second part has 2 digits, 4 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 93713-40:
(7*9)+(6*3)+(5*7)+(4*1)+(3*3)+(2*4)+(1*0)=137
137 % 10 = 7
So 93713-40-7 is a valid CAS Registry Number.

93713-40-7Relevant articles and documents

Biodiesel Glycerin Valorization into Oxygenated Fuel Additives

Catarino, Mónica,Gomes Fonseca, Frederico,Gomes, Jo?o,Soares Dias, Ana Paula

, (2021)

Current industrial methods of biodiesel production lead to an excess of crude glycerin which requires costly purification before commercialization. Production of oxygenated fuel additives is a potential route for glycerin valorization. Glycerin acetylation was carried out over heterogeneous acid catalysts (15%, glycerol weight basis) using glacial acetic acid (molar ratio = 9). The catalysts, containing different amounts of phosphate species (P/Si from 10 to 20 atomic ratio), were prepared by wet impregnation of commercial silica with aqueous solutions of diammonium phosphate and ortho-phosphoric acid. X-ray diffraction patterns of calcined solids presented amorphous patterns like raw silica. The prepared catalysts presented, at 120?°C, glycerol conversion higher than 89.5% after 1?h of reaction, been diacetin the major product, with triacetin selectivities lower than 26.1%. Diacetin selectivity was found to be almost invariant with catalyst acidity thus underlining the relevance of catalyst porosity due to the large acetins molecules sizes. The slow rate of triacetin diffusion in narrow pores of catalyst might be responsible for the relatively low yield obtained. Surface phosphate species showed a slow rate of leaching in the reaction medium showing high catalyst stability. Graphical Abstract: [Figure not available: see fulltext.]

Lanthanum nanocluster/ZIF-8 for boosting catalytic CO2/glycerol conversion using MgCO3as a dehydrating agent

Hu, Chechia,Chang, Chien-Wei,Yoshida, Masaaki,Wang, Ke-Hsuan

, p. 7048 - 7058 (2021/03/29)

A lanthanum-modified zeolitic imidazolate framework (La/ZIF-8) was developed to produce glycerol carbonate using CO2and glycerol as raw materials. La/ZIF-8 provides a high catalytic glycerol conversion efficiency owing to its surface-attached nanoclusters of La2O3, which can be viewed as La3+-O2?pairs that strengthen the Lewis basicity and acidity, and the large specific surface area of ZIF-8. The catalytic glycerol conversion and the yield of glycerol carbonate were 46.5% and 35.3%, respectively, using CH3CN as a dehydrating agent. With increase in the amount of CH3CN, the water molecules could react with CH3CN to reduce the selectivity. When an inorganic dehydrating agent, MgCO3, was used to physically adsorb and remove water molecules in the reaction, the selectivity of the reaction could be increased to over 95%, which is the highest ever reported. Reaction kinetics analysis also revealed that the activation energy of using MgCO3(5.4 kJ mol?1) as a dehydrating agent is lower than that using CH3CN (7.8 kJ mol?1). Moreover, the La/ZIF-8 could be recycled and reused at least three times with high catalytic performance. This study provides an effective material with dual Lewis basicity and acidity for CO2/glycerol conversion and significantly improves the catalytic performance using an inorganic dehydrating agent.

A transesterification-acetalization catalytic tandem process for the functionalization of glycerol: The pivotal role of isopropenyl acetate

Calmanti, Roberto,Perosa, Alvise,Rigo, Davide,Selva, Maurizio

, p. 5487 - 5496 (2020/09/23)

At 30 °C, in the presence of Amberlyst-15 as a catalyst, a tandem sequence was implemented by which a pool of innocuous reactants (isopropenyl acetate, acetic acid and acetone) allowed upgrading of glycerol through selective acetylation and acetalization processes. The study provided evidence for the occurrence of multiple concomitant reactions. Isopropenyl acetate acted as a transesterification agent to provide glyceryl esters, and it was concurrently subjected to an acidolysis reaction promoted by AcOH. Both these transformations co-generated acetone which converted glycerol into the corresponding acetals, while acidolysis sourced also acetic anhydride that acted as an acetylation reactant. However, tuning of conditions, mostly by changing the reactant molar ratio and optimizing the reaction time, was successful to steer the set of all reactions towards the synthesis of either a 1?:?1 mixture of acetal acetates (97% of which was solketal acetate) and triacetin, or acetal acetates in up to 91% yield, at complete conversion of glycerol. To the best of our knowledge, a one-pot protocol with such a degree of control on the functionalization of glycerol via transesterification and acetalization reactions has not been previously reported. The procedure was also easily reproduced on a gram scale, thereby proving its efficiency for preparative purposes. Finally, the design of experiments with isotopically labelled reagents, particularly d4-acetic acid and d6-acetone, helped to estimate the contribution of different reaction partners (iPAc/AcOH/acetone) to the formation of final products. This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 93713-40-7