108-69-0Relevant articles and documents
A New Route to Cyclohexanone using H2CO3 as a Molecular Catalytic Ligand to Boost the Thorough Hydrogenation of Nitroarenes over Pd Nanocatalysts
Zhao, Tian-Jian,Zhang, Jun-Jun,Zhang, Bing,Liu, Yong-Xing,Lin, Yun-Xiao,Wang, Hong-Hui,Su, Hui,Li, Xin-Hao,Chen, Jie-Sheng
, p. 2837 - 2842 (2019)
Carbon dioxide has been important in green chemistry, especially in catalytic and chemical engineering applications. While exploring CO2 to produce cyclohexanone for nylon or nylon 66 that is currently produced with low yields using harsh catalytic methods, we made the exciting discovery that carbonic acid, generated from dissolved CO2 in water, was utilized as molecular catalytic ligand to produce cyclohexanone via the hydrogenation of nitrobenzene in aqueous solution that uses Pd catalysts with a total yield higher than 90 %. Importantly, the gaseous nature of catalytic ligand H2CO3 profoundly simplifies post-catalysis cleanup unlike liquid or solid catalysts. This new green catalysis strategy demonstrated the universality for hydrogenation of aromatic compounds like aniline and N-methylaniline and could be broadly applicable in other catalytic field like artificial photosynthesis and electrocatalytic organic synthesis.
Coordination or Oxidative Addition? Activation of N-H with [Tp′Rh(PMe3)]
Yuwen, Jing,Brennessel, William W.,Jones, William D.
, p. 557 - 566 (2019)
A thermal reaction of amines, anilines, and amides with Tp′Rh(PMe3)(CH3)H (1, Tp′ = tris(3,5-dimethyl-pyrazolyl)borate) is described in this report. No N-H bond cleavage was observed for reactions between ammonia or unsubstituted aliphatic amines with the reactive fragment [Tp′Rh(PMe3)]. Instead, amine coordination products (κ2-Tp′)Rh(PMe3)(NHR1R2) (R1 = H, R2 = H, nPr, iPr, octyl; R1 = R2 = Et; R1, R2: pyrrolidine) were observed, and the crystal structure of (κ2-Tp′)Rh(PMe3)(NH2iPr) is reported. No coordination products were observed when 1 was reacted with 1,1,1,3,3,3-hexafluoropropan-2-amine, anilines, and amides. Instead, the oxidative addition products (κ3-Tp′)Rh(PMe3)(NHR)H (R = CH(CF3)2, C6H5, 3,5-dimethylbenzyl, C6F5, C(O)CH3, C(O)CF3) were observed. Both RhI-N coordination products (κ2-Tp′)Rh(PMe3)(NH2CH2CF3) and RhIII N-H addition products (κ3-Tp′)Rh(PMe3)(NHCH2CF3)H were generated when 1 was reacted with 2,2,2-trifluoroethylamine. Coordination products dissociate ammonia and amines in benzene much faster than oxidative addition products eliminate anilines and amides. The relative metal-nitrogen bond energies were studied using established kinetic techniques. Analysis of the relationship between the relative M-N bond strengths and N-H bond strengths showed a linear correlation with a slope = RM-N/N-H of 0.91 (10), indicating that the Rh-N bond strength varies in direct proportion to the N-H bond strength.
Encapsulation of bimetallic metal nanoparticles into robust zirconium-based metal–organic frameworks: Evaluation of the catalytic potential for size-selective hydrogenation
R?sler, Christoph,Dissegna, Stefano,Rechac, Victor L.,Kauer, Max,Guo, Penghu,Turner, Stuart,Ollegott, Kevin,Kobayashi, Hirokazu,Yamamoto, Tomokazu,Peeters, Daniel,Wang, Yuemin,Matsumura, Syo,van Tendeloo, Gustaaf,Kitagawa, Hiroshi,Muhler, Martin,Llabrés I Xamena, Francesc X.,Fischer, Roland A.
, p. 3583 - 3594 (2017)
The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal–organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core–shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core–shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquidphase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.
Selective Reduction of Nitroarenes to Arylamines by the Cooperative Action of Methylhydrazine and a Tris(N-heterocyclic thioamidate) Cobalt(III) Complex
Ioannou, Dimitris I.,Gioftsidou, Dimitra K.,Tsina, Vasiliki E.,Kallitsakis, Michael G.,Hatzidimitriou, Antonios G.,Terzidis, Michael A.,Angaridis, Panagiotis A.,Lykakis, Ioannis N.
, p. 2895 - 2906 (2021/02/27)
We report an efficient catalytic protocol that chemoselectively reduces nitroarenes to arylamines, by using methylhydrazine as a reducing agent in combination with the easily synthesized and robust catalyst tris(N-heterocyclic thioamidate) Co(III) complex [Co(κS,N-tfmp2S)3], tfmp2S = 4-(trifluoromethyl)-pyrimidine-2-thiolate. A series of arylamines and heterocyclic amines were formed in excellent yields and chemoselectivity. High conversion yields of nitroarenes into the corresponding amines were observed by using polar protic solvents, such as MeOH and iPrOH. Among several hydrogen donors that were examined, methylhydrazine demonstrated the best performance. Preliminary mechanistic investigations, supported by UV-vis and NMR spectroscopy, cyclic voltammetry, and high-resolution mass spectrometry, suggest a cooperative action of methylhydrazine and [Co(κS,N-tfmp2S)3] via a coordination activation pathway that leads to the formation of a reduced cobalt species, responsible for the catalytic transformation. In general, the corresponding N-arylhydroxylamines were identified as the sole intermediates. Nevertheless, the corresponding nitrosoarenes can also be formed as intermediates, which, however, are rapidly transformed into the desired arylamines in the presence of methylhydrazine through a noncatalytic path. On the basis of the observed high chemoselectivity and yields, and the fast and clean reaction processes, the present catalytic system [Co(κS,N-tfmp2S)3]/MeNHNH2 shows promise for the efficient synthesis of aromatic amines that could find various industrial applications.
Sustainable and recyclable palladium nanoparticles–catalyzed reduction of nitroaromatics in water/glycerol at room temperature
Chen, Jin,Dai, Bencai,Liu, Changchun,Shen, Zhihao,Zhao, Yongde,Zhou, Yang
, p. 540 - 544 (2020/07/14)
Palladium nanoparticles with unique catalytic activity and high stability are synthesized. These nanoparticles exhibit excellent catalytic reduction activity for nitroaromatics in green solvents in the presence of H2 at ambient pressure and temperature. The prominent advantages of this nanotechnology include low consumption of catalyst, excellent chemoselectivity, high reusability of the catalyst, and environmentally green solvents.
Ligand compound for copper catalyzed aryl halide coupling reaction, catalytic system and coupling reaction
-
Paragraph 0111-0119, (2021/05/29)
The invention provides a ligand compound capable of being used for copper catalyzed aryl halide coupling reaction, the ligand compound is a three-class compound containing a 2-(substituted or non-substituted) aminopyridine nitrogen-oxygen group, and the invention also provides a catalytic system for the aryl halide coupling reaction. Thecatalytic system comprises a copper catalyst, a compound containing a 2-(substituted or non-substituted) aminopyridine nitrogen-oxygen group adopted as a ligand, alkali and a solvent, and meanwhile, the invention also provides a system for the aryl halide coupling reaction adopting the catalyst system. The compound containing the 2-(substituted or non-substituted) aminopyridine nitrogen oxygen group can be used as the ligand for the copper catalyzed aryl chloride coupling reaction, and the ligand is stable under a strong alkaline condition and can well maintain catalytic activity when being used for the copper-catalyzed aryl chloride coupling reaction. In addition, the copper catalyst adopting the compound as the ligand can particularly effectively promote coupling of copper catalyzed aryl chloride and various nucleophilic reagents which are difficult to generate under conventional conditions, C-N, C-O and C-S bonds are generated, and numerous useful small molecule compounds are synthesized. Therefore, the aryl halide coupling reaction has a very good large-scale application prospect by adopting the copper catalysis system of the ligand.
Synthesis of Substituted Anilines from Cyclohexanones Using Pd/C-Ethylene System and Its Application to Indole Synthesis
Maeda, Katsumi,Matsubara, Ryosuke,Hayashi, Masahiko
supporting information, p. 1530 - 1534 (2021/03/08)
The synthesis of anilines and indoles from cyclohexanones using a Pd/C-ethylene system is reported. A simple combination of NH4OAc and K2CO3 under nonaerobic conditions was found to be the most suitable to perform this reaction. Hydrogen transfer between cyclohexanone and ethylene generates the desired products. The reaction tolerates a variety of substitutions on the starting cyclohexanones.
Porous polymeric ligand promoted copper-catalyzed C-N coupling of (hetero)aryl chlorides under visible-light irradiation
Wang, Erfei,Chen, Kaixuan,Chen, Yinan,Zhang, Jiawei,Lin, Xinrong,Chen, Mao
, p. 17 - 21 (2020/11/04)
A porous polymeric ligand (PPL) has been synthesized and complexed with copper to generate a heterogeneous catalyst (Cu@PPL) that has facilitated the efficient C-N coupling with various (hetero)aryl chlorides under mild conditions of visible-light irradiation at 80 °C (58 examples, up to 99% yields). This method could be applied to both aqueous ammonia and substituted amines, and is compatible to a variety of functional groups and heterocycles, as well as allows tandem C-N couplings with conjunctive dihalides. Furthermore, the heterogeneous characteristic of Cu@PPL has enabled a straightforward catalyst separation in multiple times of recycling with negligible catalytic efficiency loss by simple filtration, affording reaction mixtures containing less than 1 ppm of Cu residue. [Figure not available: see fulltext.]
The immobilized Cu nanoparticles on magnetic montmorillonite (MMT?Fe3O4?Cu): As an efficient and reusable nanocatalyst for reduction and reductive-acetylation of nitroarenes with NaBH4
Zeynizadeh, Behzad,Rahmani, Soleiman,Tizhoush, Hengameh
, (2019/11/28)
In this study, the immobilization of copper nanoparticles on superparamagnetic montmorillonite, MMT?Fe3O4?Cu, was studied. Magnetically nanoparticles (MNPs) of iron oxide (Fe3O4) were primarily prepared by a chemical co-precipitation method. Next, the prepared Fe3O4 MNPs were intercalated within the interlamellar spaces and external surface of sodium-exchanged montmorillonite. Finally, Cu NPs were immobilized on magnetic montmorillonite by a simply mixing of an aqueous solution of CuCl2·2H2O with MMT?Fe3O4 followed by the reduction with NaBH4. Characterization of MMT?Fe3O4 clay system represented that through the immobilization of Fe3O4 MNPs, disordered-layers structure of MMT was easily reorganized to an ordered-layers arrangement. The synthesized composite systems were characterized using FT-IR, SEM, EDX, XRD, VSM, BET and ICP-OES analyses. SEM analysis exhibited that dispersion of Cu NPs, with the size distribution of 15–25 nm, on the surface of magnetic clay was taken place perfectly. BET surface analysis indicated that after the immobilization of Fe3O4 and Cu species, the surface area and total pore volume of MMT?Fe3O4?Cu system was decreased. Next, the Cu-clay nanocomposite system showed a perfect catalytic activity towards reduction of nitroarenes to anilines as well as reductive-acetylation of nitroarenes to acetanilides using NaBH4 and Ac2O in water as a green and economic solvent. The copper magnetic clay catalyst can be easily separated from the reaction mixture by an external magnetic field and reused for six consecutive cycles without the significant loss of its catalytic activity.
Simple reversible fixation of a magnetic catalyst in a continuous flow system: Ultrafast reduction of nitroarenes and subsequent reductive amination using ammonia borane
Byun, Sangmoon,Cho, Ahra,Kang, Dong Yun,Kim, B. Moon,Kim, Ha Joon,Kim, Hong Won,Kim, Seong Min,Lei, Cao,Park, Jin Kyoon
, p. 944 - 949 (2020/03/11)
Continuous reductive amination of aldehydes with nitroarenes over a Pd-Pt-Fe3O4 catalyst was performed. We used NH3BH3 as not only a hydrogen source for nitro reduction, but also a reductant for imine reduction. Secondary aromatic amines were obtained in the continuous flow reaction in good to excellent yields.